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Method of Overlapping Patches for Electromagnetic
Computation Near Imperfectly Conducting Cusps

and Edges
Leonid Proekt, Sergey Yuferev, Igor Tsukerman, and Nathan Ida, Member, IEEE

Abstract—An asymptotic solution method for three-dimensional
electromagnetic field problem inside and outside an imperfectly
conducting cusp is proposed. Implementation of the method leads
to a boundary value problem with singular boundary conditions.
This problem can be solved numerically using the partition of unity
method. Wave propagation in an L-shaped waveguide is modeled
as an example.

Index Terms—Asymptotic solutions, finite elements (FEs),
impedance boundary conditions, partition of unity.

I. INTRODUCTION

T HE PROBLEM of electromagnetic wave propagation
through compound structures that comprise two or more

different homogeneous materials with parallel interfaces is
completely (at least theoretically) solved. In contrast, prop-
agation of the wave in the structure that consists of several
components with nonparallel surfaces is by no means trivial. To
the best of the authors’ knowledge, even the simplest problem
of that kind, the problem of diffraction on a conducting wedge,
is still waiting for a complete solution.

Let us start from some functional analysis aspects of
the problem. Obviously, the energy of the system must
be finite. That is, components of electric and mag-
netic fields must belong to the function space

. Note that if a vector
function belongs to , it does not follow that its components
belong to the space . So, in
general, these components can be square-integrable but singular
functions. In fact, this is the case when an electromagnetic
wave is scattered by an edge or cusp of a good conductor. The
present paper is devoted to the study of this situation.

In Section II, the general idea of the method of surface
impedance is described. In Section III we propose a general
three-dimensional (3-D) formulation of a new asymptotic
approach to the analysis of the behavior of the electromagnetic
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Fig. 1. Local coordinates on the surface of the conductor.

field in the vicinity of an edge or cusp of a good conductor.
In Section IV the method is implemented for the case of a
conducting edge.

It has been shown [1] that at the edge of a good conductor the
surface impedance experiences a singularity. Hence a numerical
approximation taking into account the singularity needs to be
constructed. To do so, we employ the Partition of Unity Method
(PUM) on overlapping patches (Section V).

II. THE METHOD OFSURFACE IMPEDANCE

When modeling diffraction of a monochromatic electro-
magnetic wave on the edge of a good conductor, one normally
needs to know the field distribution outside the conductor.
So instead of solving the Maxwell equations in the whole
domain, we would like to formulate the problem in the exterior
region substituting the conductor with corresponding boundary
conditions. Usually, these conditions can be written in the form

(1)

In (1)

is the impedance, the ratio of the tangential components of elec-
tric and magnetic fields, and the set forms a local
orthogonal (generally speaking, curvilinear) coordinate system
(Fig. 1).

With the boundary conditions of type (1), we arrive at a well-
posed boundary value problem in the region outside the con-
ductor and could solve it by any standard numerical or (pos-
sibly) analytical method.
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III. T HE PERTURBATION METHOD

To approximate the impedance in the vicinity of a conducting
edge, we would like to find a perturbation technique that is ap-
plicable in this area.

Let us return to the system of Maxwell equations. As a first
step, we switch to nondimensional variables [2] by introducing
appropriate scaling factors for the field

(2.a)

and coordinates

(2.b)

where, is a characteristic current, is the wavelength, is
the frequency of the incident wave, is the skin
depth, and is a corresponding space coordinate (in the case
of the polar coordinate system).

We can now rewrite Maxwell’s equations in the conductor in
a nondimensional form:

(3)

where parameter is defined as . We assume that
, which corresponds to the case of diffraction on agood

conductor.
Since the ratio is the only nondimensional parameter

of the problem, it is natural to seek the solution of the system
(3) as an asymptotic series in this small parameter

(4)

Parameter in (4) is defined by the continuity conditions on
the conductor-dielectric interface and the zero-order approxi-
mation of the field in the outer vicinity of the conductor. This
approximation corresponds to the solution for the perfect con-
ductor. Substituting (4) into (3), we come to the chain of equa-
tions

(5)

Finally, the asymptotic expansions (4) of the electromagnetic
field in a good conductor lead to the following expression for
the first nonvanishing term in the asymptotic expansion of the
surface impedance:

(6)

Summarizing, we have the following algorithm for the
asymptotic approximation of the impedance.

• Find the distribution of the magnetic field in the outer
vicinity of the perfect conductor.

Fig. 2. Conducting edge.

• Using boundary conditions generated by the solution of
the previous problem, find the first nonvanishing term

in the asymptotic expansion for the magnetic field
in the conductor

(7)

• Using the solution of (6), find the first nonvanishing term

in the asymptotic expansion for the electric field in
the conductor

• Finally, using (6) and the results of the two preceding
items, find the surface impedance.

IV. DIFFRACTION ON A TWO-DIMENSIONAL CONDUCTING

EDGE

Let us implement the program introduced in Section III in the
particular case of diffraction of a plane wave on a conducting
edge. We assume that the electric part of the incident field has
the only nonzero component that is parallel to the edge (Fig. 2).
Let us take this direction as theaxis of a cylindrical coordinate
system ( ). We assume that the medium surrounding the
conductor is characterized by constants, , . Conductivity

is assumed to bepositivebut arbitrarily small. Since ,
in the whole domain surrounding the conductor .
Taking into account that the electric field possesses only the
component, we conclude that . That is, the field
does not depend on. The same is true for the magnetic com-
ponent of the wave.

The first item of the plan has been carried out in [3]: the elec-
tric field in the vicinity of a perfect conductor is given by the
formula

(8)
Now, we turn to the next two items of our plan. We need to

reconstruct the electromagnetic field in the conducting area
(see Fig. 2), given the tangential components of the magnetic
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field on its boundaries. In the general case of an arbitrary angle
, this can be done by solving the following boundary value

problem:

(9)

where is the tangential component of the magnetic field
on the surface of the perfect conductor [that is defined by the
electric field (8)] and is the first nonvanishing term in the
series (4). Solution of this problem is known [1]

(10)

where , , ,
and and are Bessel and Weber functions of theth
order, respectively, and

Since

all integrals in (10) exist.
Equality (10), together with (8), completes the general pro-

cedure of defining the first nonvanishing asymptotic term of the
impedance. Results of the asymptotic analysis of (10) are given
in [1].

V. NUMERICAL EXAMPLE: LINEARLY POLARIZED EM WAVE

IN A -SHAPED WAVEGUIDE WITH IMPERFECTLYCONDUCTING

WALLS

Let us consider propagation of a linearly polarized wave in a
-shaped waveguide. We assume that the only component of the

electrical field is directed along theaxis (Fig. 3); and
are surfaces of perfect and imperfect conductors, respectively,
and is the waveguide port. The problem can be formulated
in terms of the electrical component of the wave

(11)

In (11), is the electric impedance whose behavior in the
vicinity of the edge can be approximated as [1]

(12)

Fig. 3. Geometry of the problem.

We represent the electric field as the sum

(13)

where is any smooth function satisfying the boundary con-
ditions

(14)

The boundary value problem foris obtained by substituting
representation (13) into the problem (11), and taking into ac-
count boundary conditions (14)

(15)

The weak formulation of this problem is well known

(16)

Here, is a “test” function from satisfying the essential
boundary conditions on .

Discretization of (16) can be obtained from the weak formu-
lation in the standard way, by restricting bothand to the
finite-dimensional space constructed by method of partition of
unity [4]. This space is designed as follows:

• the computational domain is covered by overlapping
patches ;

• each patch is endowed with a local system of approxi-
mating functions . Functions are chosen to provide
a good local approximation for the solution over the patch.
In particular, they can be singular.

• the numerical solution is sought as a linear combination
of functions

that also act as trial functions in (16). Here, is a local
approximation function weighted by the corresponding
element of the partition of unity [4].

A detailed description of PUM and its implementation is
given in our accompanying paper [5]. Here we concentrate
on one aspect of the method. To effectively approximate the
solution in patches adjacent to the edge we include in the
corresponding set of approximating functions a singular but
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Fig. 4. Electric field in a waveguide with imperfectly conducting walls.

square-integrable function ( being the distance
from the edge, and in our particular case). Since the
solution is unbounded in the vicinity of the singularity point,
the absolutevalue of the numerical error can be expected
to be very large for virtually any numerical method used. It
therefore makes more practical sense to evaluate therelative
error that is asymptotically . Measuring this relative
error is qualitatively equivalent to using a weighted norm with
the weight defined as follows. First, for every singular point
( ) and corresponding patch we introduce a function

(17)

where is the distance from the
th singular point ( ) in the patch ; is the order of

the singularity, and is the element of the partition of
unity whose value at the singular point is one and whose normal
derivative on the boundary of the patch is zero. Note that in
(17), it is implicitly assumed that each singular point belongs to
one patch.

Then the weight function and the new -norm are defined
as

(18.a)

(18.b)

Each approximation function satisfies the conditions

(19.a)

(19.b)

Fig. 5. Electric field in the waveguide with perfectly conducting walls.

The approximating functions were taken as polynomials
of order up to six

(20)

Homogeneous boundary conditions on the portand on
the perfectly conducting surface were imposed by a proper
choice of constants , and in each patch. Figs. 4 and 5
represent the numerical solutions obtained. In both cases, the
domain is covered by 12 patches. The total number of degrees
of freedom is 258.
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