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Abstract: Function spaces of high-order differential-forms-based finite elements of complete bases
are analysed and compared with those of incomplete bases. Elements of complete and incomplete
bases differ only in the null space of the differential operator. They model the same range space of
the differential operator. A comparison of 1-form 2nd order hierarchical elements (hierarchical
edge elements) of complete and incomplete bases is carried out through the example of an eddy-
current problem. It is found that there is no significant difference in the accuracy of the results given
by the two kinds of elements, as long as the ratio mesh size/skin depth is sufficiently small. However
elements of complete bases are much more expensive to use.

1 Introduction

Finite elements based on differential forms, namely the
1-form (edge) and 2-form (facet) elements, have proved
their high efficiency in the computation of electromagnetic
fields. The advantages of these elements are principally the
capacity of allowing natural discretisation of the system
with appropriate continuity of fields. For a given order of p-
form elements, there exist two alternatives: the incomplete
g-order bases [1, 2] and the complete g-order bases [3, 4];
both are complete to g—1 order under the differential
operation. Whether to use the complete or incomplete order
bases has been a subject of debate over the years.

In a previous paper [5], we gave a general description of
high-order differential form-based elements. The relation of
those element spaces, in particular the inclusion property, is
clearly illustrated with the help of De Rham’s complex. The
analysis focused on elements of incomplete bases.

In this paper, the function spaces of high-order p-form
elements of complete bases are analysed and compared with
those of incomplete bases. After a short review of the
function spaces of incomplete-order p-form elements, we
give a description of function spaces of complete-order
p-form elements, in particular, of the decomposition and
the link of these spaces with the help of De Rham’s
complex. A comparison of the elements of complete and
incomplete bases, namely the case of 1-form elements (one
of the most useful elements in the computation of
electromagnetic fields) is carried out. The performance of
2nd order 1-form hierarchical elements of complete and
incomplete bases is compared through the example of an
eddy-current problem.
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2  Function spaces of p-form elements of
incomplete orders

Let W7 be the function space of incomplete ¢-order p-form
elements constructed over a 3-simplex $° (a tetrahedron).
The case of ¢g=1 corresponds to the well known Whitney
elements [2]. W% can be decomposed into a null space of the
differential operator Z7, (set of closed forms, ie. forms
vanishing under the differential operation) and a range
space of the differential operator Y7: W9=ZI® Y.

In order to show how the element spaces are decomposed
when the order is increased from ¢g—1 to ¢, we introduce the
following spaces of polynomials defined over S*:

15q = linear space of homogenous polynomials of degree ¢
G, ={ve (P)|lv=grad ¢, ¢ € P11},
S, ={ve (B)|r-v=0}

where r is the position vector.
These spaces are related by the Helmholtz decomposi-

tion: (1'3(])3 = G, ® S,. Their dimensions are, respectively,
dim(P,) = (¢ + 1)(g +2)/2
dim(G,) = dim(Pya1) = (g +2)(g + 3)/2
dim(S,) = g(g +2)
We define also:
C,={ve
T,={ve

(15,,)3|v =curlu,ue S, 1}
(Py)lr x v =0}

The space (f’q)3 can also be decomposed to (13[,)3 =
C,® T, It has to be noted that the curl operator is an
isomorphism of S’qH onto Cq, and the div operator is an
isomorphism of 7,;; onto P,. We have, respectively,

dim(y) = dim(Sye1) = (g + D(g +3)
dim(7,) = dim(P,-1) = (g + 1)/2



We denote further by P, the linear space of polynomlals
with degree uptog, 1e. P Rhe..d P and write G,
God-®G, S, =S &85, cq_coea---@éq, Tq
=Ty ®-- & T,, respectively.

Using these definitions, the null spaces of p-form elements
can be decomposed as (g = 2) [5]:

N=h Z0=1Z

q ql*PO

Z}=Gy Z)=2Z) |®G,1 =Gy
= C‘O Zg = Zq271 @ qul = qul
= 13() Z('; = 237] @Pq,] =Pq,1

and the range spaces are decomposed into

W=k Y=Y &P
Yll =§1 qu Zqu_1@~q:Gq,1
2=Cy Y=Y ,8T,=Cpi

Yp=0 Y=

Consequently, the function spaces of p-form elements have
the decomposition (g > 2):

WIOZP1 wo —

q VVqO—l@Pq:P‘{

W =GaS W =W 66 165=068S,

wr=Caelhh W =W eC.al,=CLel

3 3 _ 3 _
W' =h Wq’%—l@Pq—l—Pq—l
0 0
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di(grad)
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W, Zq Yq
]
dl(curl)
2 2 2
w, z, Y,

d l(div)
3
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Fig. 1 De Rham’s complex showing the relation between p-form
elements of incomplete bases

The relation of these spaces can be illustrated with the help
of De Rham’s complex, Fig. 1, where d denotes the exterior
differential operator in the calculus of differential forms. It
represents the grad, curl and div operators of vector
algebra. This diagram clearly shows the inclusion property
of p-form elements. In particular, the dlfferentlal operator
is an 1somorphlsm of Z& onto Y2~' and hence
dim(Y}~ N= dim(Z%).

The d1mens1ons of the spaces Z7, Y9 and W7 of p-form
elements are summarised in Table 1.

3 Function spaces of p-form elements of complete
orders

The g-order p-form elements W% given in the previous
section are complete to the g—1 order under the differential
operation, but incomplete themselves to the g-order (except
for 0-form elements), because their dimensions are smaller
than that of a complete g-order vector or scalar basis.
The reason is that the null spaces Z% (p=1,2, 3) are only of
g—1 order.

To get complete g-order element bases, it is sufficient to
complete the null space Z4 to the g-order by adding,
respectively, the gradient space G, to Z,',, the curl space C,
to Z2 and P, to Z,. Let us denote by X the null spaces of
the differential operator and by M, the function spaces of
complete g-order p-form elements. We have

0 _ 70 R
X0 =12 X} =zlag,
X}=7eC, X)=Z,aPF

and
0 _ y0 0 I _ yl 1
Nq—Xq@Yq Nq —XqGBYq
_ 2 2 3_ 3
—Xq @& Yq Nq —Xq
~ 0
N ®P,,, X,
(grad)
N, ®3,,, X,
dl(curl)
NieT,, x:
di(div)
N, x;

Fig.2 De Rham’s complex showing the relation between p-form
elements of complete bases

Table 1: Dimension of function spaces of g-order p-form elements

Spaces Elements Z% (null space of d)

Y% (range space of d)

W% (function space)

0-form 1

1form (g+1(@+2)(q+3)-6
6

2form q9(g+1)(29+7)

6

(g+1)(g+2)(g+3)-6

(@+1)(g+2)(g+3)

6 6
q(g+1)(29+7) a(g+2)(g+3)
6 2
qa(g+M(g+2) q(g+1)(qg+3)
6 2






Table 2: Dimension of function spaces of g-order p-form elements (complete basis)

Spaces Elements X% (null space of d)

Y% (range space of d)

N§ (function space)

0-form 1
1-form (Q+2)(Q+2)(q+4)_s
2-form (q+1)(q+2)(2g+9)
6
3-form (@+1(g+2)(g+3)
6

(g+1)(g+2)(g+3)—6 (@+M1(g+2)(g+3)
q(q+1><2q6+7) (q+1)(q32>(q+3)
q(a+1)6(q+2) (Q+1)(qi2)(q+3)

i (Q+1)(qz2)(0+3)

The relation of these spaces is illustrated in Fig. 2. with the
help of De Rham’s complex. It can be noticed that,
contrary to the case of incomplete bases, the null space X7
of the p-form complete -order element is larger than the
range space Y”_ of the p—1 form element. Let us denote
Q2+1 =P, Q1 | = S,41 and Q +1 = Ty41, tespectively;
the differential operator i an isomorphism of X% onto ¥/~ !
@Q(’;,l instead of onto ¥/,

The dimensions of the spaces X7, Y, and N of p-form
elements are summarised in Table 2. It can be remarked
that N,', and N2 are the family of vector elements given in [4].
The case of Nj is the element presented earlier in [3].

Following the same analysis as presented in [5], the
number of degrees of freedom to be assigned to each
simplex can be determined. The cases of 1-form and 2-form
elements are presented in Tables 3 and 4. Dimensions of the
null and range spaces on each simplex are also given.

Comparing the spaces of p-form elements of complete
bases with those of incomplete bases, it is seen that both are
complete to the g— 1 order under the differential operation.
They model the same range space and differ only in the null
space.

Consider the case of a 1-form (edge) element, the most
commonly used vector element in the computation of

Table 3: Assignment of the degrees of freedom (DOF)
of a complete-order 1-form (edge) element

Spaces Xi=Gy Yi=8, Ny
DOF on null space range space function space
of curl of curl
Edges 6xg+3 6x1-3 6 x (g+1)
Facets 4x(g-1)q/2 4 x (g—1) 4 x (g—1)(g+1)
(g+2)/2
Volume (g—2)g—-1)q/6 (g—1Mg-2) (g—2)(g-1)
(2g+3)/6 (g+1)/2
Total (g+2}(g+3) qlg+1)(2g+7)/6 (g+1)q+2)
(g+4)/6—1 (g+3)/2

Table 4: Assignment of the DOF of a complete-order 2-form
(facet) element

Spaces X3=¢, Yi=T, N
DOF on null space range space function space
of div of div
Facets 4 x g{g+3)/2+3 4x1-3 4 x (g+1)(g+2)/2
Volume (g—1)q(2g+5)/6 glg+1{g+2)/6—1  (g—"1)g+1)
(g+2)/2

electromagnetic fields. The incomplete and the complete
bases differ only by a gradient space G,. Adding Gq to the
function space of 1-form elements results only in additional
irrotational functions. This will not contribute to the
modelling of the range space of the curl operator and there
will be no influence on the accuracy of the rotational fields.
It is obvious that there is no need to use the complete order
I-form element to model the rotational field. This is
particularly the case for a magnetostatic field problem using
the vector potential formulation. However, the 1-form
element of complete order allows a better approximation of
the vector field itself. It might be useful for the modelling of
the irrotational field, for example, in the case of eddy
currents or high frequency problems.

The following Section compares 2nd order 1-form
elements of complete and incomplete bases for eddy-current
computation.

4 Comparison of complete and incomplete 2nd
order 1-form elements

Hierarchical bases of 1-form (edge) elements of the
complete and incomplete 2nd order [6], shown in Table 5,
are applied in a formulation in terms of the magnetic vector
potential-electric scalar potential to solve an eddy-current
problem. The element of incomplete order W3 takes the
basis functions of the first three lines with 20 degrees of
freedom. The complete basis takes the functions of the
whole four lines with 30 degrees of freedom.

Table 5: Hierarchical 1-form 2nd order elements bases

Spaces Edge functions Facet functions
DOF basis DOF basis
Wl 1x6 AidA—AdA;
NI | W2)GE 1x6  dad)
§2 2x4 }.,(/‘y]‘d Ak_")ukd ;Lj)

G, 1x6  dZ-2H1x4  diyhi

The problem consists of calculating the eddy currents in a
conductor inserted in the centre of the air gap of a magnetic
circuit under sinusoidal excitation, Fig. 3, [6]. The study
domain is meshed by 1600 tetrahedral elements. The
number of unknowns is 10438 for the incomplete basis
and 15414 for the complete basis. The equation system is
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Fig. 3 Example of an eddy-current problem, dimensions in mm
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Fig. 4 Variation of current density (imaginary part, 50 Hz, coarse
mesh)
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Fig.5 Variation of current density (imaginary part, 200 Hz,
coarse mesh)

The comparison is carried out using the same mesh and
under two excitation frequencies: 50 Hz and 200 Hz. The
skin depth (8)/mesh size (/) ratios are, respectively, d/h~2.2
at S0 Hz; and 6/h~1.1 at 200 Hz.

Figs. 4 and 5 plot the variation of the current density
(y component, imaginary part) along the centre line
(y=0, z=0) of the conductor at 50 Hz and 200 Hz. Results
show that, at 50 Hz (6/h~2.2), both the complete and
incomblete bases oive the same results. At 200 Hz. the skin

to the ratio d/h. As long as the skin depth is much larger
than the mesh size, we get the same accuracy from the
elements of complete and incomplete order.

To confirm this point, we used a finer mesh with 3226
elements. This mesh contains 21865 unknowns for the
incomplete basis and 32003 unknowns for the complete
basis. The ratio §/4 is about 3.5 at 50 Hz and 1.8 at 200 Hz.
Results at 50 Hz are almost the same as those obtained with
the coarse mesh. The variation of the current density at
200 Hz is plotted in Fig. 6. We observe that the result for the
incomplete-order elements becomes very close to that from
the complete-order elements. If we increase the frequency to
500 Hz, the ratio 6/k diminishes to 1.1, and we observe
again a difference between the results of complete and
incomplete-order elements (Fig. 7). It has to be stated that
when the skin depth/mesh size ratio becomes too small
(< 1), even the complete 2nd order element cannot model
correctly the sharp variations of the field. The order of
approximation has to be increased appropriately.
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Fig. 6 Variation of current density (imaginary part, 200 Hz, fine
mesh)
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Fig. 7 Variation of current density (imaginary part, 500 Hz, fine
mesh)

Table 6 compares the computation performance related
to the elements of incomplete and complete bases. The
number of iterations corresponds to the case when
the relative error of the iterative solver converges to 1077,



Table 6: Comparison of the performance of elements of
complete and incomplete bases (at 200 Hz)

Basis No. of No. of Memory No. of CPU
elements unknowns size iterations time

Mb s
Incomplete 1600 10438 7.1 199 51
3226 21865 12.6 198 112
Complete 1600 15414 14.9 214 119
3226 32003 274 216 252

We conclude that the accuracy of the results obtained
from the elements of complete and incomplete bases is of
the same order once the ratio skin depth/mesh size is larger
than 2. However, the memory size and CPU time are much
larger with the complete-order element. This shows that the
element of complete order is useful only in the case of small
skin depth. The price to be paid is an increase in the
computational effort.

5 Conclusions

The function spaces of g-order p-form elements of complete
bases are analysed and compared with those of incomplete
bases. The two kinds of bases differ only by a null space of
the differential operator. They model the same range space.
The use of a 1-form (res. 2-form) complete-order element
for the modelling of a rotational field (res. divergent field) is

redundant. In the case of eddy-current (or high-frequency)
problems, the elements of complete order may allow a
better approximation of the irrotational field. However,
through the study of 2nd order 1-form hierarchical elements
of complete and incomplete bases for the computation of
eddy currents, we found that once the mesh size is fine
enough (with the skin depth/mesh size ratio larger than 2),
the element of incomplete order can provide good accuracy
with much less computational effort. This conclusion may
also be true for the case of high-frequency problems if the
mesh size is small enough compared to the wavelength.
Since, in most applications, the mesh fineness requirement is
satisfied, the incomplete g-order element can provide good
accuracy, is more economical and hence preferable.
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