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Finite clement analysis techniques are applied to the problem of predicting signals from an
absolute eddy current probe in the tube sheet region of a PWR steam generator for the
purpose of optimizing the probe coil geometry and determining the feasibility of using such a
probe to characterize the condition of the tube and tube sheet crevice.
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1. INTRODUCTION

Numerical analysis techniques, primarily finite
difference and finite element methods, have been
used for some time to study dc and low frequency
electromagnetic fields in electrical machinery.("4 A
number of advantages have been shown to favor the
finite element approach for such studies,’ including
ease of handling boundary conditions, ability to fol-
low awkward boundary shapes, and relative economy
of computer facilities usage. These factors are partic-
ularly relevant for the simulation of electromagnetic
nondestructive testing techniques, and hence paraliel
developments have taken place in the use of finite
element analysis for modeling eddy current and ac-
tive and residual leakage field NDT phenomena.-'0

Such models are important in understanding
(visualizing) the physics of electromagnetic field /de-
fect interactions, designing NDT test rigs and probes,
developing training data for automated defect char-
acterization schemes, and simulating those testing
situations (such as in a PWR steam generator) which
are difficult and/or expensive to replicate in the
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laboratory. This paper illustrates the application of
an axisymmetric finite element code to the problem
of designing an absolute eddy current probe for use
in the tube sheet region of PWR steam generators.
The code is used to study different probe sizes and to
determine the probe responses to various sludge de-
posits in the crevice gap.

2. GOVERNING ELECTROMAGNETIC FIELD
EQUATIONS

The relevant Maxwell equations governing the
eddy current phenomena in conducting materials are

VXH=J (1)
vxE-—%— @)
AB=0 3)

where in Eq. (1) the conduction current density J is
assumed to be dominant (i.c., low frequency assump-
tion), and therefore the displacement current is
neglected. Together with the relation B = p H, Eq m
can be rewritten

V X H=0oE (4)
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The magnetic flux density B can be defined in terms
of the magnetic vector potential

B=vxAd (5

and Eq. (2) can be rewritten as

- 04
VXE=—VX—(,F (6)
or
— 94
E=-=--v¢ ()

where ¢ is the electric scalar potential due to any
existing current source J,,

J=—-0vo (8)

Using the relation J = oE and expressing Eq. (1) in
terms of A4,
94

1 — -
Z(VXVXA)""_"—:?T 9)

Assuming a sinusoidal Steady state source and using
the relation VX YV X A=~ 724+ v(v-A), Eq. (9)
becomes

(%)VZA_= ~J + jwed (10)

where w is the angular frequency of the source. Here
the divergence of the magnetic potential is taken as
zero, (V-A)=0, a known property of two-dimen-
sional fields. This is the linear diffusion equation for
the sinusoidal steady-state condition.

In axisymmetric geometries, this equation can be
written in a cylindrical coordinate system (r, 8, z)(":

1(0%4 194 604 a2 .. =
.I;( o rar 32 r? = 7t Jwod

(1)

where J, and the vector potential 4 have components
only in the positive 6 direction. At the same time the
induced current density J, has components in the
negative § direction:

J,=— jwod (12)
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For a given geometry the magnetic vector potential
can be found by solving Eq. (11) with appropriate
boundary conditions.

3. THE FINITE ELEMENT FORMULATION

Instead of solving Eq. (11) directly, variational
principles can be utilized to show that the correct
solution of Eq. (11) is obtained by minimizing the
energy related functional,%

F(A)"f[%BdB-F%jwolAlz—Js'A dv (13)

The solution now consists of finding a set of func-
tions A such that the energy related functional is
minimized. Because this cannot be done everywhere
in space, a bounded region (solution region) is dis-
cretized into a large number of linear triangular
elements. In each element three nodal points are
defined at which the magnetic vector potential is
found. The value of 4 within each element is as-
sumsed to be a linear combination of the nodal values
AGS):

3
A(r2) =50 T (a,+br+ez)d, (1)
: i=l

where A is the area of the element, and A, are the
nodal values of the magnetic vector potential. This
approximation is extended throughout the solution
region resulting in N nodal points and therefore in N
unknown values of 4.

Minimization of the energy functional is achieved
by setting the partial derivative with respect to each
nodal value equal to zero:

dF(A)
A =0 k=12..N (15)

For convenience, this operation is performed element
by element. The approximation for the magnetic vec-
tor potential in Eq. (14) is substituted into the energy
functional and the derivatives with respect to the
three nodes set to zero. This results in three equations
which in matrix form can be written as

[[s].+ j[R].)(4).=(Q). (16)

[S] is the 3X3 real part of the elemental matrix
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consisting of geometrical quantities of the mesh
(r and z values of the element vertices, the area of the
element and permeability) and represents the left-
hand side of Eq. (11). [R] is the 3 X 3 imaginary part
of the matrix and consists of the values of conductiv-
ity (o), angular frequency (w), and area of the
element, and represents the second term in the right-
hand side of Eq. (11). {Q) is the 3x1 vector of
contributions at the nodes of the element from the
impressed current densities (J,), and {A) is the 3x 1
vector of unknown values of the magnetic vector
potential at the nodes of the element.

This elemental system of equations is the basic
finite element representation of the energy functional.
Each such elemental matrix is summed into a global
system of equations

[GK4)= (0} (17)

where [G] is the N X N banded symmetric complex
global matrix, and {Q) and {4) are the N X1 com-
plex source matrix and the N X1 complex vector of
unknowns, respectively. The Gauss elimination algo-
rithm is applied to this system of equations, taking
advantage of the symmetry and bandwidth, to solve
for A at the nodes of the finite element mesh. From
the magnetic vector potential other quantities can be
calculated, such as flux densities using Eq. (5).

4. IMPEDANCE OF EDDY CURRENT COILS

In NDT applications, the signals from eddy
current probes carry information concerning the
probe’s environment, changes in which cause varia-
tions in the probe impedance. The coil impedance
can be calculated directly from the complex magnetic
vector potential.!'® The impedance of a circular loop
of radius 7, carrying a current I is

z= jw21_rr,A,
I

5

(18)

where A, is the value of the magnetic vector potential
atr,.

Integration of this equation over the cross-sec-
tion of the coil yields the impedance of the coil. Since
the values of 4 are not known at the location of each
turn in the coil, an average value is taken as repre-
senting the magnetic vector potential in each element.
This value is associated with the centroid of the
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element, the radius of the loop being r,. Then assum-
ing N, to be a uniform turn density, the impedance of
the coil is

jw21rN
Z ’L‘J'ACjAj (19)
s, j=I
or, since NI, = J,
jw21r Jw2nl,
): (r,8,) 4, (20)

where N, is the number of elements in the cross-sec-
tion of the coil. In many applications it is customary
to normalize the impedance by dividing it with the
reactance of the coil in free space, resulting in the
normalized impedance

z, =;L—O (21)

S. RESULTS

The method presented in this paper has been
applied to the study of three problems related to the
nondestructive testing of steam generator geometries
with eddy current probes:

1. Optimization of coil geometries for maximum
sensitivity

2. Detection of foreign materials in a known environ-
ment

3. Detection of geometrical irregularities

Figure 1 is a diagram of the geometry studied. It
is a section of a steam generator’s Incoloy 800 tube
inside the tube sheet region. The steam generator
(German design) has rolled tubes where the rolling
region can be at varying distances from the tube
sheet inner surface (/ in Fig. 1). The crevice gap
between the tube and tube sheet accumulates foreign
materials (mostly copper and magnetite), the detec-
tion and classification of which is desirable. The
absolute coil, 1 mm thick, has a length of / mm,
which needs to be optimized for the particular appli-
cation. In addition the signal from the rolling region
is to be modeled for identification of the tube condi-
tion.

The geometry in Fig. 1 was discretized into
10,440 triangular elements with a total of 5430 nodes,
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Fig. 1. Geometry of steam generator section showing the tube sheet,

tube, and coil. Dimensions are in millimeters.

the central portion of which is shown in Fig. 2. To
determine the probe length needed to obtain the best
signal for different locations of the rolling region
relative to the tube sheet surface, three coil lengths
(a=1, 3, and 9 mm) were modeled each for three
distances / (/=1, 3, and 9 mm). For each situation
(9 in all) the corresponding probe is positioned at
some distance from the tube sheet such that the effect
of the tube sheet or rolling region is negligible. A
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finite element solution is obtained for this position
and the impedance calculated. The probe is next
moved to a new position (one layer of elements
lower) and the process repeated. The probe is moved
in this way in 91 steps for each of the 9 situations
above to produce the curves in Fig. 3.

It is clear from this figure that the longer the coil
in comparison with the distance between the two
factors that cause the change in the signal (tube sheet
and rolling region), the less distinct are the two
phenomena in the signal. Thus in a coil 9 mm long,
testing for the rolling region, which is only 1 mm
away from the tube sheet surface, produces a flat
composite signal in which the rolling and the tube
sheet cannot be distinguished, as in Fig. 3(g). The

other extreme is when the coil is much smaller than -

the distance /, as in Fig. 3(c). Here the two signals are
simply superimposed as one signal doesn’t affect the
other.

The curves in Fig. 3 are generated at 100 kHz
and are, in general, a composite signal. The lower,
comma-shaped part of the curve is due to the effect
of the tube sheet, and the upper, “s” shaped part is
due to the rolling region. These curves compare very
well with experimental results such as the curve in
Fig. 4, taken at 100 kHz. The choice of coil shape
might be complicated by additional factors such as
the minimum number of required turns, but as can be
seen from these results, the coil should be of the same
general length as the effect it is measuring, Since the
average distance of the rolling region is about 3 mm,
a coil length of 3 mm would be a good choice. For
this reason, the rest of the situations modeled in this
work use this size coil. Figure 5 shows this ¢oil and
the field distribution around it in the vicinity of the
tube sheet and rolling region. A second significant
problem relating to nondestructive testing is the iden-
tification of foreign materials, and more importantly,
the distinction between changes in the coil output
due to these materials and other parameters such as
defects or geometrical anomalies. In applications such
as testing of steam generators, one common situation
is the accumulation of copper and magnetite deposits
in the crevice gap between the tube and tube sheet.
Because of the narrowness of the gap and the un-
known exact composition of the materials, the
numerical model is of significance in studying these
parameters.

The crevice gap was first studied with magnetite
and then with copper flush with the tube sheet. The
signals from these simulations are shown in Figs. 6(b)
and 6(¢), respectively. A distinct change in the signal

1
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Fig. 3. Impedance plane trajectories of different coils (1, 3, and 9 mm long) and different spacings between

tube sheet and rolling (1, 3, and 9 mm).
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Fig. 4. Experimental impedance plane trajectory from a 3 mm long
coil at nominal spacing of the tube sheet and rolling at 100 kHz.

compared to the clean crevice gap in Fig. 6(a) is
apparent, especially in the case of copper. The second
simulation studied is with the crevice gap filled and a
ring of 2 mm thickness above the gap to represent the
common ridge or pile up of foreign material found in
steam generators. Figure 6(c) is the signal from mag-
netite and Fig. 6(f) from copper pile up. Figures 6(d)
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and 6(g) are similar to 6(c) and 6(f), but only the ring
of foreign material is present while the crevice gap is
clean. From the signals in Fig. 6 it is clear that
foreign materials can be detected and classified by
their signals.

The relation of the different signals obtained for
the crevice gap condition is summarized in Fig. 7 for
a nominal condition of the tube sheet and rolling
region (the rolling region is 3 mm from the tube sheet
surface). Each signal is distinct and unique. Figures 3
and 6 also show that these signals tend to mask the
original information, in this case the crevice gap and
the tube sheet to the extent that their presence might
not be identifiable. Especially troublesome is the
presence of copper due to its higher conductivity.
Simulations of mixtures of copper and magnetite can
also be performed by varying the conductivity and
permeability of the mixture.

6. CONCLUSIONS
Finite element analysis techniques, originally

developed for studying electromagnetic fields in elec-
trical machinery, can be used to examine eddy cur-

\\\\§

Fig. 5. Magnetic field contours of a 3 mm coil in the vicinity of the crevice gap and
rolling region.
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Fig. 6. Signals from copper and magnetite in the crevice gap.

Fig. 7. Relation between signals from different conditions in the
crevice gap: (a) clean crevice gap; (b) crevice gap filied with
magnetite; (c) crevice gap filled with copper.

rent NDT phenomena. This paper describes the finite
element technique and shows how it can be applied
to the problem of predicting absolute eddy current
probe signals in a PWR steam generator. From a
computational point of view, the steam generator
geometry is somewhat unique in that it is symmetri-

cal about a tube axis, thus simplifying the com-
putations. For more complex geometries, a full
three-dimensional treatment will be necessary in order
to predict eddy current probe signals. Nevertheless,
one can conclude from this work that numerical
analysis methods will play an increasing role in the
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simulation of eddy current NDT phenomena, partic-
ularly with regard to designing probes and modeling
those testing situations difficult to replicate in a
laboratory.
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