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A Finite Element Model for Three-Dimensional Eddy
Current NDT Phenomena

NATHAN IDA, MEMBER, IEEE, AND WILLIAM LORD, SENIOR MEMBER, IEEE

Abstract—The defect detection mechanism for eddy current nonde-
structive testing (NDT) probes is related to the interaction of induced
eddy currents in the metal test specimen with flaws and the coupling
of these interaction effects with the moving test probe. To date, nu-
merical modeling of these phenomena has been limited to two-dimen-
sional and axisymmetric geometries. A three-dimensional magnetic vec-
tor potential finite element formulation for the modeling of eddy current
NDT phenomena is described, and the technique is illustrated by pre-
dicting differential eddy current probe impedance plane trajectories
for flaws in PWR steam generator tubing.

INTRODUCTION

MERICAL ANALYSIS techniques such as the fi-
nite element method have been successfully devel-
oped for the study of dc and low-frequency electromag-
netic fields in electrical machines [1]-[4] and large magnet
structures for fusion applications [5]. The finite element
method has been shown to have certain advantages, in-
cluding ease of handling boundary conditions and the abil-
ity to follow awkwardly shaped boundaries [6]. These
factors are of particular importance for the simulation
of electromagnetic nondestructive testing (NDT) tech-
niques, and hence parallel developments have taken place
in the use of finite element analysis for modeling electro-
magnetic NDT phenomena [7]-[9].

Following the success of a variety of two-dimensional
and axisymmetric formulations both for machine applica-
tions and NDT models, research has concentrated on the
development of more general three-dimensional formula-
tions. The general magnetostatic problem has been han-
dled by the use of scalar potentials [10]-[13], the magnetic
vector potential [14]-[16}, and integral formulations [17].
More recently, a three-dimensional numerical model for
magnetostatic NDT phenomena based on the magnetic
vector potential formulation has been reported [18], [20].
While magnetostatic problems can now be solved satisfac-
torily, the solution of eddy current problems is still under
active research-and subject to some controversy.

The choice of functions suitable for formulation is larger
[21], {22] and many of these have been tried with varying
degrees of success [23]-[26]. In many applications the use
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of a scalar potential in regions free of current sources is
preferred because of the more economical solution ob-
tained (in terms of computer resources). In current source
regions a vector potential is necessary [21], [22], and the
boundaries between the two potentials have to be coupled.
The magnetic vector potential used in this formulation is
less economical in terms of computer resources but is more
general and avoids the need of interface coupling. It is
therefore a natural choice for NDT problems where the
conductor interfaces may be of a very complicated shape.

In spite of the complicated shapes of conducting regions
such as defects, the fields are usually very tight around
the current sources (eddy current coils). This is itmportant
since in most cases the outer boundaries can be : ssumed
to have zero boundary conditions in terms of the magnetic
vector potential. Although the controversy associated with
the uniqueness of the general solution using the magnetic
vector potential still persists [27]-[29] there seems to be
a general agreement that under the foregoing conditions
the solution is infleed unique {28}-[30].

This paper presents a new numerical procedure for eddy
current problgms associated with general eddy current
calculations. ‘nuses isoparametric hexahedral elements
and a frontal solution routine for the elimination and back-
substitution processes. The method presented is tested and
compared to two-dimensional finite element calculations
for accuracy and convergence and to experimental data
obtained from three-dimensional defects in conducting
media. In addition, the paper demonstrates the successful
application of the numerical technique to moving coil
problems.

Special attention has been given to the computing as-
pects of the model, including the use of a vector computer.
This demonstrates the feasibility of such a model in a
practical situation.

ELECTROMAGNETIC FIELD EQUATIONS

The differential equations governing general time-vary-
ing electromagnetic fields at low frequencies in regions
that include magnetic and conducting materials and
impressed current densities are derived from Maxwell’s
equations:
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v-B=0 (3) vector potential is a phasor, and its time derivative can be . ;
v-D=0. @) written as
In these equations both the displacement currents and = = —jwd, (15
charge density are neglected. In addition, the following o
constitutive relations describe the material media and (14) becomes
B =puH (5) W X (V X A) = —jwdd + (16')1'3
D = ¢E (6) In this equation, the divergence of A has not been spec
7 = oE. ) fied explicitly, but the gradient of ¢ is implicit in J.
In these relations, g, o, and € are generally tensors, but Three-Dimensional Finite Element Formulation
in this formulation they are assumed to be single valued The finite element formulation of (16) can be based on
in each 'e!ement. Spatial variations in conductivity and Galerkin’s method [23] or on an appropriate variational3
pcrmcablhty.wnthm each element are possible, but field functional equivalent to (16). This latter method is adopted3
dependency is not allowed. here. . '
Substituting (4) and (7) in (2) yields - A functional can be written in terms of the components3¥
W x B = oF @ ofthe magnetic vector potential 4, the flux density B, and} "
the current denisty J [19]: g
where » = 1/pu. . ‘
The magnetic flux density can be expressed in terms of — S R2 2 2
the magnetic vector potential A =), {4 1By + »yBy + v.B:]
, B=V XA ) — VA, + J A, + JA) +
From (1) it follows that the electric field differs from the . 2 2 2
magnetic vector potential by an irrotational vector V¢, ¢ + §jwold; + 4, + A;)} dv (17)"
being th i i - = - E 1
eing the electric scalar pote—r—mal where B, 4, and J are complex vectors. The derivation of
%= 04 v Euler’s equations and the natural boundary conditions for
T 2 (10) ¢his functional have been described elsewhere [19] and are §
Substituti . . not repeated here. .
ubstituting (9) and (10) in (8) yields - The functional in (17) is derived based on the phasor 3
- A transformation which converts a parabolic type equation’g
WX (VXA =—-070— Vo (11) (i.e., (14)) into an elliptic equation (i.e., (16)). Unlike the @
functional derived for magnetostatic applications {14], &

°r2’_}15i“8 the vector identity V X (V X 4) = V(V - 4) — [20], this functional is nonextremal, and the solution is{
V4, : based on finding a stationary point about A. o
g - 94 ) The volume of interest is now discretized into a num-§
WV'A = V(- A) =0+ V. (12) per of eight-node hexahedral isoparametric elements. The;
magnetic vector potential is approximated at each node in;
From (7), (10), and (12), for any nonzero conductivity it the volume by a set of shape functions N; .
follows that ¢ must satisfy [18] ’ ok
) - A= 2 NA; 18)§
Vig = —= (V- 4. (13) = 3
. : where K is the number of nodal points in each finite ele-
Equations (11) and (13) are a coupled system that can be ent.
solved for the three components of the magnetic vector  This approximation is now substituted into the func;
potential A and the scalar potential ¢ everywhere in the tional (17). Taking the first derivative with respect to each

solution region. unknown
Under the assumptions made in this formulation, the ’
scalar potential can arise only due to the impressed cur- aFA) =0, (|9)
rent densities. In this case, (11) and (13) become uncou- 0Aj :
pled, and the following equation is sufficient [18]: one reaches the standard finite element equation for an ele-
_ Ly G ment: |
vVX(VXA)=—0-——+J,v (14) ) ’ "
ot ([K]. + jwolR]] {4}, = {Q}. (20
where J, denotes the source current density. where [K] is a 24 X 24 matrix rcpresenting the real part

Under sinusoidal steady-state conditions the magnetic of the stiffness matrix. [R] is a 24 X 24 matrix of the
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" imaginary part, {4} is the 24 X 1 vector of unknowns,
and {Q} is the 24 x 1 vector of applied currents calcu-
~ lated at the nodal points of the element.
The elemental contributions of the form in (20) are now
calculated using an eight-point Gaussian quadrature and
summed into a global system of equations of the form

[G] {4} = {0} (21)
where
[G] = [[K] + jwolR]].

The next step is the application of boundary conditions to
the global system and solution using Gaussian elimination.
The system in (21) is both symmetric and banded the
size of [G] being 3N * (3 * BW) where BW is the semi-
bandwidth of the system. Similarly, {4} and {Q} are of
size 3N *1 where N is the total number of nodal points in
the solution region. The matrix [G] is too large to be
stored in a computer’s memory for any realistic problem
both because of the large number of nodal points and the
large bandwidth of such systems. Therefore, a frontal
method of assembly and elimination has been adopted.

Calculations with the Magnetic Vector Potential

From the values of the magnetic vector potential various
quantities such as flux densities, eddy current densities,
stored and dissipated energies and coil impedances can be

_ calculated. The eddy current density is calculated directly
from the magnetic vector potential using the equation:

J, = —jwoA. (22)

Thus the three components of J, can be calculated every- -

where in the solution region. Note, however, that 4 is only
known at the eight nodes of each element, while the cur-
rent density only has meaning within the volume of the
element. The current density in any element is, therefore,
found by averaging the contribution of the nodes and as-
suming it to be constant within the element: -

7. =

8
-} 2 jwod, (23)

i=1
The dissipated energy can be calculated from the eddy
current distribution in (23)

Py =yl (24)
where i denotes a single element, v; the volume of the ele-
ment i, J, is the average eddy current density in element
i, and g; is the conductivity of the element. ,

Substituting (23) and summing over the number of ele-

ments M, the total dissipated energy is
M

P P= ‘Zl viow?|Ag|? (25)

where A,; indicates the average (centroidal) \)alue of the

magnetic vector potential in element i.
The components of the flux density B are calculated

2637
using (9):
’ g = %4 _ 94,
* 'y 9z
oo
5= % T m (26
p 0
o ax  dy

The spatial derivatives d/dx, d/dy, and 9/dz are in fact
calculated as part of the finite element solution [18] and
therefore (26) is calculated with very little effort in the
finite element solution program. The stored energy in the
solution region can now be calculated as
N

W= 5:21 »:B% + v,B% + v,BY) - v.  (27)

The impedance of any source within the solution region

is calculated from energy considerations. The resistance
of the source (coils or any arrangement of conductors) is

P
r
where [ is the rms value of the source current. Similarly,
the inductance is calculated from the stored energy

R = (28)

w
L= 1—2 . (29)
The source impedance is therefore
1
Z=R+jouL = 7 P + ju2W). (30)

RESuULTS

To test the validity of this formulation, it has been ap-
plied to both two- and three-dimensional problems. In the
two-dimensional solutions, the results from the three- and
two-dimensional calculations are compared directly. This
method allows an evaluation of the accuracy as well as the
convergence of the solution as the number of elements in-
creases. In the three-dimensional case, the results are
compared with experimental data.

The first problem tested is shown in Fig. 1. A current-
carrying conductor is located between two thick conduct-
ing slabs. This problem is solved in both two and three
dimensions, and the eddy current density is calculated
everywhere in the region using (23) and compared. Fig. 2
shows the discretization of the volume into finite ele-
ments. Because of the four-way symmetry in Fig. 1, only
a quarter of the volume is discretized into 250 elements
and 396 nodes to form a coarse mesh.

To form a finer mesh, 1000 elements and 1331 modes
were used. The boundary conditions for this problem are
summarized in Fig. 3.-On the planes 'Y =-0 and X = X,,
zero magnetic vector potential values are imposed, these
boundaries being far removed from the current source and
thus having negligible field intensities. The boundaries at
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Fig. 1. Current-carrying conductor between two conducting slabs.
s
/;;//;/////////;////
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Fig. 2. Finite element discretization of geometry in Fig. 1. Because of
symmetry only quarter geometry is modeled (1000 elements, 1331 nodes).

Z = Zy and Z = 0 could be specified by first calculating
the values of A4 from a two-dimensional situation. This was
avoided in this case because a comparison to the two-di-
mensional solution would tend to be more favorable than
leaving the boundaries unspecified. In order to compare
these results with two-dimensional calculations, two sim-
ilar meshes were developed, consisting of 50 triangular
elements and 36 nodes for the coarse mesh and 200 ele-

toaba 2 ZHCIA T Tl

ments and 121 nodes for the finer mesh. Thus the three-
and two-dimensional meshes are identical in the sense that
the number of nodal points in any cross section of the
three-dimensional mesh is identical with the correspond-
ing two-dimensional mesh. Furthermore, the nodal pomts‘
are located at identical coordinates.

For each of the different situations (two- and three-di-
mensional solutions for two different meshes) the mag-
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Ax,Ay,A2=00

Fig. 3. Boundary conditions for conductor between slabs problem.

netic vector potential was calculated together with the
eddy current density directly under the conductor (on the
vertical symmetry line, see Fig. 4). Fig. 4(a) shows the
solution for the coarse mesh, with 36 nodes in a cross
section. The third line (C) represents the exact solution
expected for this problem since a fine mesh (3200 trian-
gular elements, 1681 nodes) was used. Fig. 4(b) shows the
calculation for the finer mesh with 121 nodes in the cross
section. Clearly, the solution is much closer in both the
two- and three-dimensional situations, as expected. It is,
however, interesting to note that the two- and three-di-
mensional solutions converge to the exact solution from
different directions. This is probably due to the use of dif-
ferent types of elements (triangular elements derived in
local coordinates as compared to isoparametric finite ele-
ments derived in local coordinates). Fig. 5 is an attempt
to quantify the error involved in these calculations. It
clearly shows that the three-dimensional code errors are
comparable to those of the two-dimensional calculations
and that these are reduced by increasing the number of
nodal points. Because of computer limitations, however,
it was not possible to increase the number of nodal points
to much more than 121 nodes in a cross section, and there-
fore the dashed line represents an expected curve and not
-“calculated values. It is also worth mentioning that the val-
ues plotted in Fig. 5 are the largest errors calculated in
Fig. 4(a) and (b).

The second problem presented here relates to the non-
destructive testing of nuclear power plant steam genera-
tors. It consists of an Inconel 600 tube and a carbon steel
support plate. The tube passes through the support plate
with a 0.015-in clearance between the support plate and
tube: Two conical pits with a base diameter of 0.1575 in
(4 mm) and depth of 0.030 in (0.762 mm) are located op-
posite each other on the outer surface of the tube as in
Fig. 6. This particular arrangement provides symmetry
while remaining three-dimensional. In reality, drilling a
perfect conical pit is almost impossible. Two conical pits
with a small base diameter of 0.010 in (0.25 mm) are
therefore modeled, and the corresponding calculated out-
put is compared to experimental output from identical ma-
chined pits. Two separate situations are modeled:

1) the tube with the conical pits but without the carbon
steel support plate, and
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Fig. 4. Comparison of two- and three-dimensional solutions. (a) Coarse
mesh (250 elements, 396 nodes). (b) Finer mesh (1000 elements, 1331
nodes).

2) the tube, conical pits, and the support plate as in
Fig. 6. '

This problem is unique not only in being three-dimen-
sional but also in the fact that to produce an impedance
plane trajectory, it is necessary to move the eddy current
probe past the defects (pits). Thus a series of calculations
are required. This is done by calculating the probe imped-
ance at a particular position, then moving the probe to a
new position and calculating the corresponding imped-
ance. This is continued for a relatively large number of
positions thus obtaining an “impedance plane trajectory.”
This trajectory is representative of the particular flaw
present and therefore is a very important tool in the eval-
uation of NDT results.
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Fig. 5. Comparison of errors in two- and three-dimensional solutions, for conductor between slabs problem at different discre-
tization levels. Number of nodes in three-dimensional case indicates the number of nodes in a cross section.
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Fig. 6. Steam generator geometry showing an Inconel 600 tube, support
plate, and eddy current probe. Two conical pits are shown under edge of
.~ support plate.

Fig. 7 shows the mesh for-this problem. It consists of a

total of 5408 eight-node elements and 6572 nodes. Be-
cause of the symmetry mentioned earlier, only a quarter
of the geometry is modeled. Fig. 7(a) shows a view of the
mesh with hidden lines removed showing the location of
the tube and support plate. Fig. 7(b) is a view of the plane
X = 0 and shows the coils of the differential probe, the
tube and support plate, and the location of the conical pit.
The region of probe movement is indicated by the two ar-
rows- in Fig. 7(b).
" The boundary conditions for this problem are as fol-
lows. On the outer curved boundary and on the planes
Z = 0 and Z = Z,, zero boundary condition$ are applied
for all three components of the magnetic vector potential.
The assumption is that these boundaries are far removed
" from' the source (eddy current coils). The boundaries at
X = 0and Y = 0 are symmetry planes and therefore can
be left unspecified. The current in the coils at these
boundaries crosses at 90°, and therefore, at the bounda-

jaassenRnnni
JIRENENESNES]
IINADERBIBAEI

_—

1
1
1

1
one

Y BH

Fig. 7. Finite clement discretization of steam generator geometry. Total of
5408 elements and 6572 nodes were used to model quarter of geometry.
(a) total mesh with hidden lines removed. (b) Cross section through mesh °

‘at Y = 0, showing tube, support plate, and pits. Probe moves in section:
indicated by arrows with total of 24 probe positions. !

ries in the absence of any discontinuity, the tangential
components of A are zero while the normal component can
be left unknown or calculated from an axisymmetric for-
mulation. In this application, only the normal components
on the plane Y = 0 were specified as zero and the rest left
unspecified. . ' '
The problem is solved for 24 probe positions. In the first
case, where only the conical pits are modeled, the situa-
tion is also symmetric in the z direction, and the probe is
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@ (b)

Fig. 8. Comparison of results; modeling of tube and conical pits. (a) Ex-
perimental impedance plane trajectory. (b) Finite element prediction of
impedance plane trajectory.

moved up to the point where it is centralized with the
pit. To obtain a complete impedance plane trajectory the
impedances calculated are reflected about zero and the
total trajectory plotted as shown in Fig. 8. Fig. 8(a) shows
the experimental trajectory and Fig. 8(b) shows the cal-
culated trajectory. These impedance plane trajectories are
normalized, and therefore only the shape is compared.

In the second case, the pit is located at the edge of the
support plate as shown by the shaded area in Fig. 7(a).
This was done since in practice it is known that a com-
posite signal of the support plate and the pit results. The
probe is again moved through 24 positions, up to the point
where it is centralized with the support plate. In this case,
the symmetry in the z direction does not exist, and there-
fore the impedance plant trajectory is completed by mod-
eling the support plate itself, without the pit, and reflect-
ing these impedances about zero. The experimental and
finite element output for this situation are plotted in Fig.

"(a) and (b), respectively. It is interesting to note that the .

two lobes of the impedance plane trajectories in Fig. 9 are
almost identical. Essentially, this means that the effect of
the pit on the signal is very small both in the experimental
and finite element output. This is due to the fact that these
trajectories were obtained at 1 kHz. At higher frequencies
the effect of the pit is enhanced, but modeling at higher
frequencies requires a larger number. of elements due to
the reduced skin depth. e A

It is also worth noting that the largest error occurs
around the origin (i.e., in the first few probe positions).
This is mainly due to the fact that the boundaries of the
solution region were not taken far enough from the probe.
It is, however, of little importance, the error being rela-
tively small. Another characteristic of this type of mod-
eling is that most of the change in the impedance occurs
in only a few probe positions, close. to-the edges of dis-
continuities.. Thus, in Figs. 8 and9 less than half of the
probe positions form the trajectory, the rest being points
close to the zero point. B

2041

@ ®
Fig. 9. Comparison of results; modeling of tube, support plate, and pits.
(a) Experimental impedance plane trajectory. (b) Finite element predic-
tion of impedance plane trajectory.

COMPUTATIONAL CONSIDERATIONS

In many situations where the finite element method is
used, little or no consideration is given to the computer
used. It is assumed that the computer is capable of storing
the matrices in (29) on core and solving them quickly with
little computational error. This is certainly the case in
many two-dimensional problems. Even if the number of
nodal points is large, the bandwidth of the global matrix
is usually small, and the solution time is reasonable.

In contrast, in three-dimensional problems of the type
described here the number of variables to be solved for
(number of equations) is very large and so is the band-
width. Thus, for example, the problem described earlier
requires the solution of 19 716 equations with a semiband-
width of 432. To store the complex matrix [G] alone, 17
Mwords of memory are required. Such vast memories are
beyond the capacity of any computer, and therefore it is
necessary to use off-core storage in one way or another.

The approach used in this work consists of the use of -
an efficient frontal technique that uses skyline storage.
This, together with a large magnetic disk (or even a mag-
netic tape) overcomes the shortage of real memory but it
is done at the expense of solution time. '

The results in Figs. 8 and 9 were obtained using a Cyber
205 vector computer. By using the vector instruction avail-.
able and efficient 1/0, the solution time can be reduced to
acceptable levels. Table I summarizes the solution times
obtained for the current results and also compares the per-
formance of the Cyber 205 and a VAX 11/780 for a similar
problem with a smaller number of elements and nodal
points. This problem had 3360 elements and 4171 nodes.
This resulted in a system of 12 513 equations with a band-
width of 342. A few points are worth comment in this
table. . :

. First, the solution time and resources needed for mesh
generation are insignificant in all cases as compared to the
solution time. Similarly, most of the CPU time is spent in
the elimination process, while most of the I/O time is used



2042

TEEE TRANSACTIONS ON MAGNETICS, VOL.

MAG-21. NO. 6, NOVEMBER {9KS

TABLE [
COMPARISON OF PERFORMANCE OF A VAX 11/780 AND A CYBER 205
VECTOR COMPUTER"

12 513 Variables

12 513 Variables 19 716 Variables

vX 11/780 Cyber 205 Cyber 205
Mesh generator 4 min, 57 s 16s 28 s
Elimination 12 h, 20 min
Backsubstitution 22 min

one step

Backsubstitution” 8 h, 48 min
Total 21 h, 13 min 29 min, 54 s 66 min, 16 s
Total clock time approx. 82 h 30 min, 10s 66 min, 44 s

“The third column refers to the generator gcometry modeled in this work.

*Twenty-four steps.

in the backsubstitution process. In the case of the Cyber
205, no information is available on the various steps, but
the total time is significantly reduced (to about 0.6 percent
of the time required on the VAX 11/780 for the same prob-
lem). Note that the VAX 11/780 was used in a single-user
mode for this particular problem. Second, the size of prob-
lems solvable on the Cyber 205 is significantly larger, and
they can be solved in reasonably short times.

Also note that the results presented here only represent
the first step in moving from a conventional computer to
a vector environment. Thus, for example, the program on
the VAX 11/780 was used on the Cyber 205 with minor
changes and only minimum vectorization. In addition,
since the results on both computers were identical (al-
though the Cyber 205 uses a 64-bit word as compared to
the 32-bit word used by the VAX 11/780) one could use
half-words (32-bit) on the Cyber 205, effectively speeding
the operations by a factor of two and reducing storage by
a factor of two. In the next step, the algorithm itself should
be modified to take advantage of more of the vector in-
structions available on vector computers.

Another significant aspect in three-dimensional analysxs

,is-computer graphics. Although it is important in any di-

mension, two-dimensional analysis requires only modest.

line plotting capabilities. In three dimensions, hidden line
removal (Fig. 7(a)), rotation, cut sections through the
mesh (Fig. 7(b)), and others are indispensible if the vast
data set generated in the solution process is to be man-
ageable.

CONCLUSION

The.numerical model outlined in this paper is capable
of predicting the necessary parameters for a complete
nondestructive evaluation process. In the examples given
here, only the coil impedances for a differential probe are
calculated. Other situations such as absolute eddy current
probes, permeability, and conductivity values around de-
fects can be evaluated. Indeed, any parameter in the field
equations can be calculated for given values of the other
parameters. The examples given in this work are taken
from the nondestructive testing field, but the model is ap-
plicable to a wide range of situations that fall within the
assumptions made in this formulation.

The solution times obtained, especially with the Cyber
205 vector computer, are well within acceptable limits and
can be further reduced by proper algorithm development.
This, coupled with the new developments in the finite ele-
ment method such as infinite elements, should bring the
solution of large moving probe problems within the prac-
tical realm
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