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Biorthogonal Wavelet Analysis on 2D EM Scattering from Large Objects
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Absmrr- This paper investigates the potential advantages of
wavelet analysis for large scale problems in EM scattering, A
biorthogonal wavelet-based MoM is used in analyzing 2D EM
scattering from a conducting structure. Numerical examples show
that wavelet-based MoM is especially suitable for analysis of large
problems in the sense that the sparseness of the resulting matrices
becomes more apparent with increase of the electrical size of
scatterers.

Ikx tenns- Biorthogonal wavelets, moment method, electro-
magnetic scattering, sparse matrix.

I. INTRODUCTION

Wavelets have proven to be of many advantages over other
standard methods in signal and image processing. In numerical
analysis wavelets also offer important features. One is that the
resulting matrix is very sparse when wavelet bases are used as
expansion and test bases. This property is particularly
attractive when dealing with integral equations [1,6-10].
Compactly supported wavelets were used as bases to transform
matrix operator equations resulting from discretization of
integral equations [1] and sparse matrices were obtained in all
cases. Orthogonal wavelets on [0,1] for analysis of thin wire
antennas and scatterers have been presented [9]. In [10] authors
applied biorthogonal spline wavelets on [0,1] to the solution
of integral equations in EM scattering. A biorthiogonal wavelet
based method of moments (BWMoM) was proposed, and
numerical examples have shown that sparse matrices can
generally be expected when using this method in solving
integral equations defined on smooth or piecewise smooth
curves. This paper provides numerical evidence on the
particular advantages of using wavelet based MoM for solving
large scale problems. The rest of the paper is organized as
follows: In section II we outline the major issues in using
biorthogonal wavelet based moment methods for solving
integral equations. This includes a brief description of the
biorthogonal spline wavelet bases on the interval [0,1] used in
this work, followed by discussion of the discretization of the
integral equations under wavelet bases. The empbhasis is on the
analysis of the decay behavior of the matrix coefficients.
Section III provides numerical examples. 2D electromagnetic
scattering is analyzed by solving the corresponding EFIE, and
five cases corresponding to five different scatterer sizes were
tested by using the method presented in [10]. A brief
conclusion is given in section IV,

II. BIORTHOGONAL WAVELET-BASED MOM FOR THE SO-
LUTION OF 2D EFIE

A. Biorthogonal Spline Wavelet Bases on [0,1]

Biorthogonal spline wavelets on [0,1] at a single resolution
level are composed of a finite number of so-called boundary
wavelets and a finite number of interior wavelets [3,10].
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A lowest resolution level Jg needs to be prescribed for a
specific biorthogonal wavelet pair for analysis to be realistic.
The primal wavelet and dual wavelet bases are expressed as
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where ¥; and gj are thve sub-bases of the primal and dual
wavelets at resolution level j, respectively, and are given by
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where V; and % denote the shift index sets of the wavelets on

[0,1] at the resolution level j for the primal and dual sides,
respectively. Note that

Wi=®p={vii; keln), j=Jo-1 (3)
9= By ={Viok: keAn), Jjelo-1 @)

where ®; and 5, account for the sub-bases of the primal and
dual scaling functions on [0,1] at the lowest resolution level

Jo, and Aj and A; correspond to the shift index sets for the
primal and dual scaling functions, respectively, From a single
cardinal B-spline function of order d, a family of biorthogonal
wavelet bases with exactness order of d for dual scaling
functions, satisfying d2d and d+d=even, can be constructed
[2,3]. The major features of the biorthogonal spline wavelet
bases described above can be outlined as follows [3,10]:

(i). There are fixed number of left and right boundary wavelets

on both the primal and dual sides for a fixed pair of (J+d),
and the number of the total wavelet functjons over [0,1] at
a given resolution level j is fixed, i.e., 2/.

(ii). The sub-basis ®@; in (3) is exact of order d on [0,1];

Similarly the sub-basis aj in (4) is exact of order ;1"
(iii). Biorthogonality relations:

(‘Pj , ‘Pf)[o,u = §1” J'2Jo— 1 )
where (‘I’ I ‘HI;j-)[o,x] denotes a matrix-form inner product

over [0,1], 1% the unit matrix of size 2Jx2J, 6“ the delta
function.
(iv). Zero-moments:

Oy, - " BT _ ~
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(v). Reisz basis property: Any function fe Lo(R[0,1]) has a
unique expansion
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B. Biorthogonal Wavelet Based-MoM for the Solution of
EFIE

The electric field integral equation (EFIE) for 2D EM
scattering (TM case) is expressed as

inc,  _ k1 N2 (Lot N g
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where C denotes the contour representing the surface of the
scatterer. If C is smooth or piecewise smooth, then, by ap-
plying the domain decomposition and local transformation
scheme described in [11], the biorthogonal wavelet bases on
[0,1] described above can be lifted, thus we have the corre-
sponding wavelet bases on the contour C. By using the dual
wavelets as the trial basis, we can expand the unknown surface
current in (8) as

Jh
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where r'=7(&) is the compressed form of the specific two-step
mapping used from the physical domain C to the domain [0,1],
Jh is the pre-specified highest resolution level in the analysis.
The MoM with the primal wavelets as the test basis gives the
following matrix equation

Jo:Jn

(Agyp=u (10)

The elements of the coefficient matrix AY L h and the right
hand-side vector U are given by ‘
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where Q; and 5,--,;" are the supports of yjx and Yk
respectively, ¢(€) is the integral scale determined by the
specific two-step mapping used in the domain transformations,
and j,j'=Jgp-1,..Jp, k eV}, k' eV;.

C. Decay of the Matrix Coefficients

Theoretical analysis and numerical examples have shown
[1,4,8,10] that when compactly supported wavelets with cer-
tain order of zero-moments are used in solving integral equa-
tions, the coefficients of the resulting matrices exhibit fast
decay away from the diagonals near the singularities, and the
decay is a key to achieving "sparse" matrices. The zero-
moment property of the wavelet bases plays a central role in
generating this decay, while other facts, e.g., the small sup-
ports of wavelets, also make important contribution.. The fol-
lowing analysis and arguments show that with the zero-
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moments and small support of the underlying wavelet bases,
the decay of the coefficients will be more apparent thus, a
higher compression rate can be achieved when underlying
systems become larger and more levels are used in analysis.

For the EFIE in (8), the kernel is the second kind Hankel
function of order zero. When the argumept kir—r' is suffi-
ciently large, the principal part of the Hankel function can be
written as

HP(kir—r) ~ —Bo

—— (13)
(klr—r’l):+2
and has the following estimate
08 08 HE? (Ke(&-r())) = —Ca&ICBE) (14)
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where &,E€[0,1], Co (&) and Cp (&) are determined by the two-
step mappings used. The coefficients in (11) are estimated as

A= () +(1+d))
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po (15)
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where disf{Q;x,Q;.x) denotes the distance from the support of

the wavelet T/},k to the support of the wavelet yjx. Eq. (15)
indicates that the decay rate of the coefficients is directly related
to the order of the zero-moments and the sizes of the supports
(and distance) of the wavelets. Higher order of the zero-
moments (larger values for d and d) means faster decay; The
smaller support means that more elements are off singularities,
thus exhibiting decay. Another important observation is that
when treating large scale problems, and more level wavelets are
being used, more coefficients will have very small values
compared with a smaller system, because in this case the
supports of the wavelets at higher levels get smaller and
smaller, and more coefficients are calculated with larger values
for the term dist(Qj,k,Qj',k-) in (15) due to corresponding

wavelets, Wy x and Y« being far away from each other. Because
of this the matrix can be made "sparse"”. By this, we mean that
a large number of the coefficients are very small compared with
the other coefficients. Setting these small coefficients to zero
has little effect on the final solutions of the matrix equation.

III. NUMERICAL EXAMPLES
A. Descriptions of the Problems
The example is a 2D EM scattering from an object which
has an open structure shown in Fig. 1. The inner angle of the

structure was chosen to be 90° and a TM plane wave traveling
in the x-direction was assumed in the analysis.

%e=4s°
] 4 \ X

Fig. 1 An open structure illuminated by a plane wave.
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The 2D electromagnetic scattering problem can be reduced
to solving the same integral equation as in (8) except for the
domain, The example is intended to investigate the numerical
behavior of the wavelet bases for large scale problems. In
computational electromagnetics the size of an underlying
problem is determined by the electric size of the physical
domain, measured by the wavelength 4 of the electromagnetic
wave. For this example if the geometric size of the object
expressed in terms of the wavelength as L=mA, then a large
size means a large value of m.

In numerical analysis treating a large size prob]em means
that a large system corresponding to a large number of the
unknowns has to be solved. For example, in finite element
analysis when the size of the underlying problem is large, a
sufficiently fine mesh with sufficient number of nodes has to
be generated. This requires solution of a large system of dis-
cretized matrix equations.

The size of the physical domain, the open structure in this
example, was properly determined in the analysis. Specifically,
L=4A was chosen for the analysis at a single level with the
prescribed lowest resolution level Jg=5, and the higher
resolution level Jj also equal to 5, i.e., Jp=5, because the
numerical tests performed in the analysis have shown that
when the structure is of this size and the lowest resolution
level is chosen as Jp=5, one level analysis is sufficient for a
given accuracy requirement.

Doubling the size of the object to L=84, we need doubly
refined basis functions in order to achieve about the same
accuracy. In finite element based methods, this can be done by
doubling subdivision of the physical domain. In wavelet
analysis one needs to update the basis functions to the next
higher resolution level, i.e., J;,=6 has to be used in the ex-
pansion (9). Similarly, for the size L=164, the higher resolu-
tion level of J;=7 is needed.

Five cases were tested in the analysis. They correspond to
the scatterer sizes of L=4A4, 84, 164, 324 and 644 while the
highest resolution levels used for these cases are J;=S5, 6, 7, 8,
and 9, respectively, with the fixed lowest resolution level
Jo=5. Thus, the case L=4A with J;=5 corresponds to a single-
level analysis, L=84 with J;=6, to a 2-level analysis, etc.

In each case, the resulting matrix equation was solved
with both the original dense matrix and sparse matrices by
applying thresholds. If the solution from the dense matrices is
called the "true" solution, the solutions from the corresponding
sparse matrices are called the approximate solutions, then the
approximate solutions can be evaluated by determining a
proper criterion based on the "true" solution.

B Criteria for Evaluation of the Solution Error from Sparse
Matrices

Let Js40, denote _the "true" solution by using the original
dense matrices, Js(f}o:/,, the approximate solution by applying
the sparse matrices for a given threshold & and given multilevel
analysis (Jo: Jp), i.e.,

Jn —
Js;J():J;,= Z 2 Jj,kwj,k s

Jj=lo-1 keV;

(16)

I
J.s(';b}otlh': Z Jj(,bl?%k > (17)
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The difference between the two solutions, denoted by
TG,y . is given by

Jh
Ms(;?ozlh = Jsdgdy ~ Js(;‘?o:.l;, = z

Jj=do-1

k;j (/7] (7PN

Two criteria can be defined for the evaluation of the solu-
tion errors:

(i). Maximum Error

The maximum error can be defined as

A.I,g.b,)u= ax{

where (J ix—J (2)) are the coefficients in the difference (18), Jjx
J J

(ij J]k)
Jik

j=do~1,.dn k€Y. (19

the coefficients in the "true" solution (16).

(ii). Average Error
Projecting the difference onto the primal bases

{Wik: j=Io=1,dn ke V), o

the average error can be determined by

172
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where the norm is defined by

= 3, 3, I wiost!|

(22)

and{. , .Jo,1) is the inner product defined over [0,1].

C. Numerical Results

The proposed BWMoM in [10] has been implemented by
object-oriented programming, and the resulting matrix equa-
tions were solved by a solver based on preconditioned bi-
conjugate gradient method. The corresponding C++ code was
run on a Cray-T90.

Fig. 2 shows the magnitudes of the wavelet coefficients in
the expansion (16) for the surface currents computed with the
highest resolution level Jj being 7 and the scatterer sizes
L=16A. It can be seen that the wavelet coefficients at the
highest resolution level are very small compared with those at
the lower levels. This suggests that the wavelet coefficients at
the levels higher than the chosen levels (i.e., j=5-7) would be
even smaller if further updates to the higher levels were
performed. This situation was retained in the other four tests,
and was both the basic starting point and expectation when the
idea to perform these tests was first formed.



Fig. 3 shows the sparsity pattern of the matrix for the case
L=82 and Jp=6 when the threshold 6=0.0008 was applied to
the original dense matrix. The dark areas correspond to the
nonzero entries. Fig. 4 shows the relationships between spar-
sity of the matrices and the corresponding scatterer sizes when
predetermined average solution errors were applied. Fig. 4
indicates that the matrices become sparser when the problem
becomes larger. This may be a very interesting and useful
result. Fig. 5 shows the current distributions on the scatterer
surface with size L=8A. Both the 'true" and the approximate
solutions are displayed.

Table 1 shows‘the statistical results of the operations actu-
ally taken when solving the full and sparse matrices and their
relationships with the sparsity and different thresholds for some
acceptable accuracy. It can be seen that the larger the problem
the more computation time is saved.
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Fig. 2. Wavelet expansion coefficients for L=16A and J=7.
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Fig. 3. Sparsity pattern for L=84 and Jp=7.
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Fig. 4. Sparsity vs. the electric sizes of the object.
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Fig. 5. Current distributions for L=8A.

TABLE 1. Execution times and sparsity versus thresholds,

Size of scatterer 4 §_7~ 16A 3&% 64%
Matrix NxN 65x65  129x129 257x257 513x513 1025x1025
No. of iterations 50 38 31 28 26
Thresholds 2x1073  ax1074  2x1074 sx1075  2x1075
Overall errors 010~%) 01075 01073 o000% 001079
Sparsity (%) 68.4 45.2 30.6 24.3 21.7
CPU (s) (full) 0.759  2.29 7.35 26.52  98.21
CPU(s) (sparse)  0.521  1.033  2.24 6.45 21.9

CPU (%) Gaving) 0314 ____54.9 69.5 75.6 77.7

IV. CONCLUSIONS

The wavelet-based MoM is especially suitable for analysis of
large problems in the sense that the sparseness of the re-
sulting matrices becomes more apparent as the electrical
size of underlying objects increases.
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