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Abstract: This paper presents an application of artificial
neural networks to magnetic inverse problems. Artificial
neural networks derive their own computing power through
massively parallel distributed structures. They have the
ability to learn and therefore generalize. Based on these
capabilities, artificial neural networks can be used to solve
complex problems which currently are intractable. The
application is demonstrated here by two simple identification
examples. Its calculated results agree with the analytic result
indicating the method provides good accuracy. Furthermore,
novel stability tests are also provided. This paper gives better
results compare to [1] and [2], since the rms error is used
which is more accurate than full-scale percent rms error.
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1. Introduction

Recently, artificial neural networks have been introduced to
solve electromagnetic inverse problems [1] and [2]. Inverse
problems arise in a number of arcas. Examples include
industrial nondestructive testing, medical diagnostics,
geophysical prospecting for petroleum and minerals, and
detection of earthquakes. Electrical inverse problems can
sometimes be stated as simply as the following: If there is an
electric charge in space, it is easy to calculate the electric field
around it. What about taking some samples of the electric
field to predict the position of the eleciiic charge? Since the
inverse problem is highly nonlinear and without formulations
to follow, it is very difficult to construct an effective
inversion algorithms. An artificial neural network, however,
has the following properties: nonlinearity, input-output
mapping, fault tolerance and most important, learning from
examples. The need for learning from examples is closely
related to the difficulty of formulating explicit rules.
Artificial neural networks are based on abstracting from the
complex details of human thought and building a simple
model using a network of simple processors. Artificial neural
networks consist of a Iarge number of simple processing
elements called neurons or nodes. Each neuron is connected to
other ncurcons by means of directed links, each with an
associated weight. The weights represent information being
uscd by the network to solve a problem. The artificial neural
nctwork essentially determines the relationship between input
and output by looking at examples of many input-output
pairs. In learning processes, the actual output of the artificial
neural network is compared to the desired output. Changes are
made by modifying the connection weights of the artificial
neural network to produce a closer match. The procedure
ilerates until the error is small enough. Some work has been
done in this arca [1] and [2). The prediction errors are called
the full-scale percent root mean squared error which means
dividing the root mean squared error by the range.

This paper presents an artificial neural network approach
to magnetic inverse problems. The artificial neural network is
used to learn cases of the samples and then generate its own
predictions. This paper shows that by the method of back-
propagation and properly changing the learning rate, the
neural network can give good results in root mean squared
error. Also, stability tests reassure that the results are correct
and stable. We use two straightforward magnetic problems
which have analytic solution to verify the effectiveness of
this method. The first problem is to iderntify two end points
of a current segment lying on a 0-3 line segment by
sampling the magnetic field intensity at 8 points around a 3-3
region. The length of the current segment ranges from 0 to 3.
The second problem is to predict the center of a 1-1 square
current loop in a 3-3 region by measuring 10 points of the
magnetic field intensity on the boundary. This type of
application has particular appeal in nondestructive testing of
materials.

2. Structure of artificial neural networks
Artificial neural networks, also called artificial neural
systems, neuroccmputers, parallel distributed processors or
connectionist models are an attempt to mimic the structure
and functions of brains and nervous systems of living
creatures. Generally speaking, an artificial neural network is
an information processing systems composed of a large
number of simple processing elements, called artificial
neurons or simply nodes. Neurons are interconnected by direct
links called connections with an associated weight, which
cooperate to perform parallel distributed processing in order to
solve a desired computational task. One cf the attractive
features of artificial neural networks is their capability to
adapt themselves to special environmental conditions by
changing their connection strengths or structure i.e. changing
their weights. Years of studies have shown that artificial
neural networks exhibit a surprising number of the brain's
characteristics. For example, they iearn from experience,
generalize from previous examples, and abstract essential
characteristics from inputs containing irrelevant data. In this
paper we choose the back-propagation method to demonstrate
the potential of artificial neural networks to solve magnetic
inverse problems.

One of the most influential developments in ariificial
ncural network was the invention of the back-propagation
algorithm, which is a systematic method for training
multilayer artificial neural networks. The standard back-
propagation learning algorithm for feedforward networks aims
to minimize the mean squared error defincd over a set of
training data. In feedforward artificial ncural networks neurons
are arranged in a feedforward manner i.e. each neuron may
receive an input from the external environment or from the
neurons in the former layer, but no feedback is formed. The
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network architecture for a feed forward network consists of
layers of processing nodes. The network always has an input
layer, an output layer and at least one hidden layer. There is
no theoretical limit on the number of hidden layers but
typically there will be one or two. In our case, there is only
one hidden layer. Every neuron in each layer of the network is
connected to every neuron in the adjacent forward layer. A
neuron's activity is modeled as a function of the sum of its
weighted inputs, where the function is called the activation
function, which is typically nonlinear, thus giving the
network nonlinear decision capability. Each layer is fully
connected to the succeeding layer. The arrows indicate flow of
information (Fig.1). Where nj is the number of neurons in
the input layer, ng is the number of neurons in the hidden
layer, n, is the number of neurons in the output layer, x; are
the inputs to the input layer where [=/,...,n;, yi is the value
of the hidden layer where k=1,...,ny, z,, is the value of the
output layer where m=1,...,n,, where w,[k” is the weight
connecting the Itk neliron in the input layer to kth neuron in
the hidden layer, and w,E,Z,,] is the weight connecting the kth
neuron in the hidden layer to the mth neuron in the output
layer. The nodes of the hidden and output layer are:
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where the activation function fis traditionally the Sigmoid
function but can be any differentiable function. The Sigmoid
function is defined as

foo=—L — 3)
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The back-propagation method is based on finding the outputs
at the last(output) layer of the network and calculating the
errors or differences between the desired outputs and the
current outputs. When the outputs are different from the

desired outputs, corrections are made in the weights, in
proportion to the error.

AWIc[l2n]= )’},‘f’(Zm)(Zm - dm) (4)

where d,, represent the desired output, k=1,.. ., np,
m=1,....,n, and

f'(x)=9fix)/ox (5)

If f is the Sigmoid function, and
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the update rule for the weights from the hidden layer to the

oulput layer is
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where k=1,...,ng, m=1,...,np and 1 is the learning rate. The

update rule for the weights from the input layer to the hidden
layer is
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where [=1,...,n,, k=1,...,ng. The back-propagation algorithm’

has been generated based on this structure.

3. Identification of the position of a current
segment

Suppose there is a current segment on the y axis between 0 to

3. The end points of the current segment are d| and dp. The

fength of the current segment is less than 3. The magnetic

field intensity at any point p in space can be calculated by the

Biot-Savart Law (Fig. 2), which is

di
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Fig. 1. Multilayer artificial neural network.
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Fig. 2. Magnetic ficld intensity at point p.
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Fig. 3. Identification of the current segment.

For this case, we calculate the magnetic field intensity at
by,...,bg (Fig. 3). In a real problem sensors can be placed in
the position by,...,bg, where the real data can be measured.
We calculate 406 cases for different lengths and positions of
the current segment between 0 to 3, then use the 406 sets of
data as examples to train the back-propagation algorithm to
predict the end points of the current segment on the ¥ axis 7]
and z2 between 0 to 3.

For the back-propagation algorithin the activation
function f is the Sigmoid function, the learning rate initially
is 0.5 but as the root mean squared (rms) error gets smaller it
decreases to 0.3. This is the experience from the training
which also matches the idea of learning-rate annealing in [5].
The input layer has 8 neurons, since we have 8 inputs. 10
neurons are chosen in the hidden layer. The output layer has 2
neurons. Assuming the real value of the end points are d} and
d>, the neural network calculated result are 77 and zo. For the
learning process the rms error for z; is 0.018. The rms error
for z7 is 0.042. After learning, we use 406 cases to test the
system. All the testing cases are different from the learning
cases so that the testing cases are independent of the learning
cascs. For the testing cases the rms error for zj is 0.020. The
rms error for z2 is 0.044 (Fig. 4 and 5). To show stability,
we add one percent noise to some of the inputs in each of the
406 cases. Still for the tested cases the rms error for zj is
0.049, the rms error for z3 is 0.023 (Table 1).
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Fig. 5. Testing result for z3 compared with dy.
TAable 1
Summaries of the Roct Mean Squared Error
Ims error z] 22
Learning process 1.8% 4.2%
Testing process 2.0% 4.4%
Testing process with noisy input 4.9% 2.3%

4. Identification of the position of a
rectangular current loop

A 1-1 rectangular current loop is located in a 3-3 squared

region. The magnetic ficld intensity at by,...,b10 can be

calculated by Biot-Savart Law. In a real problem, the

magnetic field intensity can be measured by sensors (Fig. 6).

In the back-propagation algorithm the same activation
function and changing the learning rate had been used with 10
input neurons 10 hidden neurons and 2 outputs. After learning
400 cases of the positions of the current loop in the 3-3
region, the center of the current loop has been predicted at the
output. If (x,y) represent the output of the artificial neural
network and (zy4, y4) represent the real position, the rms error
for x in the learning process is 0.030. The rms error for y is
0.033. For the testing cases the rms error is 0.038 for x and
0.035 for y, where all testing cases are different from the
learning cases (Fig. 7 and 8). To verify stability, we add one
pereent noise to some of the inputs in each of the 400 sets.
For the tested cases the rms error for x is 0.046, the rms error
for y is 0.036 (Table 2).
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Fig. 6. Identification the center of the current joop.
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Table 2
Summaries of the Root Mean Squared Error
ms error 21 9
Learning process 3.0% 3.3%
Testing process 3.8% 3.5%
Testing process with noisy input 4.6% 3.6%
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Fig. 7. Testing result for x compared with x4
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Fig. 8. Testing result for y compared with yg

5. Conclusions

We have presented an artificial neural network approach to
solve magnetic inverse problems. The artificial neural
network method is very general. It can be used in different
cases, and the solution is quite good and stable. Usually the
learning process is done off line. So when the network have
been trained, the neural network system will give an instant
prediction. This is promising in practical identification
problems such as nondestructive testing. The back-
propagation method has its limitation in finding the global
minimum, In future work evolutionary methods will be used
based on the structure of the artificial neural networks.
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