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Selection of the Surface Impedance Boundary Conditions for a Given Problem

Sergey Yuferev and Nathan Ida

The University of Akron, Akron, OH, 44325-3904, USA

Abstract - It is well-known that the surface impedance boundary
conditions (SIBCs) are classified by their order of
approximation. In the present paper universal relationships
between characteristic values of the problem are proposed
considering the order of approximation so that the SIBCs, best
suited to a given problem, can be easily selected. The
methodology is applicable to the time- frequency- domain linear
and non-linear SIBCs. Numerical examples are included to
illustrate the methodology.

Index terms - low penetration problems, asymptotic expansions
analysis, approximate boundary conditions, surface impedance
boundary condition, skin effect, perturbation methods.

I. INTRODUCTION

Calculation of the field distribution in the conductor and
surrounding space under condition of the skin effect is a
classical problem in engineering electromagnetics. If the main
interest is focused on the field in an exterior region, use of the
skin effect theory can essentially simplify the problem,
namely: the conducting volume can be replaced by the
approximate boundary conditions (ABCs) applied at its
boundary and eliminated from the numerical procedure.
These ABCs take into account the material properties of the
conductor and provide approximate relationships between the
tangential components of the electric and magnetic fields or
between the normal and tangential components of the
magnetic field. By analogy with circuit theory where the ratio
between the voltage and current has been denoted by the term
“impedance”, the ABCs received the name surface impedance
boundary conditions (SIBCs).

The surface impedance concept was introduced in early
1940’s [1-3]. The basic concept is the following. If the skin
depth in the conducting body is so short that the variation of
the field in the direction tangential to the body’s surface is
much less than the field variation in the normal direction, then
the original 3-D equation of the electromagnetic field

diffusion into the body can be replaced by a 1-D equation in

the direction normal to the surface of the body. Analytical (in
the linear case) or numerical (in the non-linear case) solution
of the reduced equation can be then used to derive the SIBCs
on the body’s surface.

The original frequency domain conditions have been
transformed to the time domain form [4-6]. The smooth
surface SIBCs have been extended to corners [7-9]. Recently,
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SIBCs for non-linear problems have been developed [10-11].
At present various SIBCs of different approximation order are
used in combination with the BE, FE and FDTD methods for
analysis of a wide range of practical applications such as
transformers, inductive heating devices, microstrip lines, HF
power applications, transmission lines, plasma and magnetic
levitation  devices, non-destructive testing analysis,
electromagnetic scattering, geophysical problems, etc. The
correct choice of the SIBCs for a given problem is very
important and not always clear a priori, especially in the
transient case. If the order of the approximation of the SIBCs
used in the computation is inadequate, then the computational
results are not validated enough. On the other hand,
application of the high order SIBCs for the calculation of very
thin skin layers does not provide gain in accuracy of the
results and leads to useless computational expenses. In this
paper we propose the methodology how to select the SIBCs,
that are best suited for a given problem, using the
characteristic values of this problem.

II. CLASSIFICATION OF SIBCS BY APPROXIMATION ORDER

The SIBCs developed by now for modelling of
homogeneous isotropic conducting bodies can be classified
by the order of approximation into the following classes.

1. The Leontovich approximation, in which the body’s
surface is considered as a plane and the field is assumed to
be penetrating into the body only in the direction normal
to the body’s surface. The SIBCs in the Leontovich
approximation can be written in the frequency and time
domain as follows:
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Here wis the angular frequency of the field source, o, u
and € are, respectively, the electrical conductivity,
magnetic permeability and dielectric permittivity of the
body, “*” denotes time-convolution product, I,(x) is the
modified Bessel function of order n, U(t) is the unit step
function and ¢, k=1,2, are the principal curvature
coordinates defined as
€y X €y, =€, =1
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where &,,é,,,é, are the basis unit vectors of the system

and the unit normal vector 7 is directed inside the body.

2. The Mitzner approximation, in which the curvature of the
body’s surface is taken into account, but the diffusion is
assumed to be only in the direction normal to the surface
as in the Leontovich approximation. The frequency and
time domain SIBCs in the Mitzner approximation can be
written in the form:
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where d,, k=1,2, are the local radii of curvature of the

coordinate line 4, and U'(¢) is the Dirac function.

3. The Rytov approximation, in which the field diffusion in
the directions tangential to the body’s surface is taken into
account. The frequency and time domain SIBCs in the
Rytov approximation can be written in the form:
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The SIBCs of the first class are called low-order conditions
while the SIBCs of the second and third classes that are high-
order conditions. As can be noted from (1)-(3), a SIBC of
lower order is included in a SIBC of higher order. Therefore,
use of the low-order SIBC in a given problem means that the
high-order terms are neglected.

II. CHARACTERISTIC VALUES OF THE PROBLEM

Any non-static electromagnetic problem involves the
following scales: characteristic dimension D" of the body’s

surface and characteristic time 7°. We use these values as
“input data” in our methodology.
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Characteristic time is defined as the ratio 2/w for time-
harmonic incident field and the incident pulse duration 7, for
the pulsed source.

Characteristic dimension D° is defined as

D" = min(R,,R,)
where R, is minimum radius of the curvature of the surface
coordinate lines in the case of smooth body and R, is the
minimum distance between the field source and the body.

Using D" and 7", we define the characteristic skin depth
6 and characteristic dimension A of the field variation along

the body’s surface as follows:
8 =47"/(uo) @)

A=ct’ ®)
where c is the velocity of light.
If the material properties are non-linear, the characteristic

‘permeability 4" (reluctivity v') and conductivity ¢~ should

be used in (4). Since the electrical conductivity-temperature
relationship and BH-curve of the conductors are assumed to

be known, values v" and ¢” can be found as follows
V*=V*\(H‘); O'*=O"(T*);
where the characteristic magnetic field H' and temperature
T’ can be expressed in the terms of D", 7° and characterstic
current I” as
H'=TI(4nD"); T =1" (4ncpv*D'2)

More details on the choice of the characteristic values in non-
linear case can be found in [12].
The conditions of applicability of the surface impedance

concept can be easily written in terms of D”, §and A:
§<< D’ or p=38/D" <«<1 (6)
A>>D' or g=D"[cT" <<1 (7
where p and g are basic parameters of the problem. The
conditions (6)-(7) hold for all SIBCs.

III. SIBCS AS ASYMPTOTIC EXPANSIONS

As has been shown by Rytov [1], an SIBC can be
represented in the form of asymptotic expansions in the small
parameter equal to the ratio of the characteristic penetration
depth and characteristic dimension of the body’s surface:

Et’k = (_l)k 2:=0 pkﬂz"(ﬁﬂa—k ) ; ®

where “~” denotes the non-dimensional values obtained by
introducing the following scale factors [12]:
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Here the square brackets denote a scale factor for the
corresponding value.

The representation (8) has a clear physical meaning,
namely: the zero-order terms (p=0) in the expansions are the
conditions on the surface of perfect electrical conductor (so-

[1911192] = D*; [n] = PD';
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called PEC-limit, in which the field diffusion into the body is
neglected). The first-order, second-order and third-order
terms give the corrections of the order of the Leontovich,
Mitzner and Rytov approximations, respectively.

The SIBCs (3a)-(3b) are represented in the form (8) as
follows:
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Because in the expansions (9) the terms of the order O(p*)
have been neglected, condition (6) can be replaced by:
p*<<1 (10)

IV. METHODOLOGY

Now we can evaluate the ranges of the characteristic values
for which the SIBC (9) (and, consequently, (3)) are best
applicable. The conditions (6)-(7) of applicability of the
SIBCs involve two characteristic scales (D" and 7" ) and two
parameters of the problem (p and q), therefore, the scales are
uniquely expressed by these parameters.

From (10) it follows that approximation errors of the PEC-
limit, the Leontovich SIBCs, the Mitzner SIBCs and the

Rytov SIBCs are p, p*, p* and p*, respectively. Then we

can define the approximate range of the parameter p, for
which the SIBCs of these classes can be best applied:
1. The PEC boundary conditions

p <0.06 (11a)
2. The SIBC:s in the Leontovich approximation

p=006+025 (p* =0.003+0.06) (11b)
3. The SIBCs in the Mitzner approximation

p=025+04 (p* =002+006) (11c)
4. The SIBCs in the Rytov approximation

p=04+05 (p* =003+0.06) (11d)
The range of the parameter g can be defined as

g<0.06 (12)

Under the definition (11)-(12) the approximation error due to
using the SIBCs will not exceed 6%.
Introduce the following functions ¢ and y from (6)-(7):

D' =p (o) (z")"* = (7", p) (13)

D' =cqt" =y(7",q) (14)
By substituting the extreme values (11)-(12) of the parameters
p and ¢ into the functions (13)-(14), the desired ranges of the

scales D" and 7 can be obtained for a given problem.

Note that it would be preferable to eliminate the properties
of the conducting material from the functions (13)-(14). For
this purpose we introduce the following non-dimensional
variables

D' =oucD’ (15)

T =ouct (16)
With the variables (15)-(16) the functions (13)-(14) can be
written in the following form:
D =47 =§(T",q) a7
D =ptE) =¥, p) (18)
The distributions of the functions (17)-(18) for the extreme
values of the parameters p and g given by (11)-(12) are shown
in Fig. 1.

Regions (1a)-(1d) denote the application area of the SIBCs
in the PEC-limit, in the Leontovich approximation, in the
Mitzner approximation and in the Rytov approximation,
respectively. If the point in the D"-7" plane lies in the
regions 2 and 3, then the surface impedance concept can not
be applied because the conditions (11)-(12) break down.

Therefore, to select the SIBCs for a given problem
knowing the characteristic values D" and 7" and the material
properties o and i, we should
1. calculate non-dimensional values D' and 7" using (15)-

(16);

2. find the appropriate point in the D’ -7 plane;

3. if this point lies in the regions 1la-1d, choose
corresponding SIBCs from (3a)-(3b) or the PEC boundary
conditions.

As a conclusion of this section let us emphasize, that the
functions shown in Fig. 1 are universal because they do not
depend on the properties of the conductor material.
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V. NUMERICAL EXAMPLE

The SIBCs (1b), (2b) and (3b) were coupled with the
surface integral equation using the technique described in
[13] and the formulation developed was solved by the
boundary element method. We considered a pair of identical
copper parallel conductors with circular cross section where
equal and opposite directed single trapezoidal pulses of
current 1 A are flowing from an external source as shown in
Fig. 2. Radius of each conductor and the distance between the
conductors were taken equal to 0.1 m (characteristic value

D). Under these conditions the current density has only one

component directed along the conductors.

To illustrate the theory, the distributions of the surface
current density over one half of the cross section of one
conductor were calculated for the following current pulses:

1. 77=10"%s (p=37-107 and ¢g=33-10" ). From (11)-
(12) it follows that the PEC-conditions are suitable for this
problem. Figure 2 shows that the use of the SIBC of the
next order (Leontovich’s SIBC) will not provide
significant increase of the accuracy of the results
(difference between the curves does not exceed 4%).

2. 7°=10" s (p=12-10" and g=33-10"%). In this case
the Leontovich SIBC seems to be optimal. From Figure 3
it follows that the difference between the curves obtained
using the PEC- and Leontovich conditions is about 15%
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Fig. 2. Distribution of the surface current density over the conductor surface
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Fig. 3. Distribution of the surface current density over the conductor surface
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whereas application of the Mitzner SIBC increases the
accuracy by 2% only.

3. 7=10"s (p=37-10" and ¢=33-107). Figure 4
shows that the use of the Leontovich SIBC leads to the
inpermissible computational error (about 18%). On the
other hand, difference between the curves obtained in the
Mitzner and Rytov approximations does not exceed 3%.
Therefore, in this problem it is necessary to use the
Mitzner SIBC as the methodology predicts.

40 T T T
a5l B -B  PEC-imit
—— C Leontovich's SIBC
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'S
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Fig. 4. Distribution of the surface current density over the conductor surface
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