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Abstract - The approximate boundary conditions for the
tangential component of the electric field and normal
component of the magnetic field on the surface of a
homogeneous body of finite conductivity (conductor or lossy
dielectric) are derived for transient incident electromagnetic
field. Scale factors for basic variables are introduced in such a
way, that a small parameter, proportional to the ratio of the
penetration depth and body’s characteristic size, appears in the
dimensionless Maxwell’s equations for the conducting region
and then the perturbation method is used. The use of the
boundary conditions together with space-time domain surface
integral equations for electric and magnetic fields is proposed. A
numerical example is included to illustrate the theory.

1. INTRODUCTION

More than fifty years ago Rytov. [1] applied the
perturbation method to calculate the skin effect in good
conductor. He obtained the distributions of magnetic and
electric fields inside the conductor perpendicular to the
surface in the form of a power series in the skin depth &

= 2/(ouo) (1)

where @ is the angular frequency, o the electrical conductivity
and 1 the magnetic permeability of the conductor. Relation
between the first non-zero terms of the expansions of the
electric and magnetic fields on the surface of conducting body
is well-known as Impedance Boundary Condition:

7 E(w) = /Gi]” (an)Xn—Z(w)(an(w))xn )

where E and H are the electric and magnetic fields,
respectively; 7 is normal vector pointing inside the
conductor; € is the electrical permeability and Z is the surface
impedance. Relation (2) is frequently used in both of low- and
high-frequency analysis to represent the conducting region if
the penetration depth 8 is much smaller than the geometrical
dimension D of the conductor region.

This approach can be used for transient problems, when,
for instance, the pulse duration 7 ’ of the incident field is so

short that the field has no time to diffuse deep into the body

Manuscipt received March 18, 1996.
Nathan Ida: e-mail nida@uakron.edu, fax 216 972-6487;
Sergei Yuferev: e-mail yuferev@ammp3.ioffe.rssi.ru, fax 812 247-1017.

and remains concenirated in a thin layer near the body's
surface. In this case the use of the inverse Laplace transform
allows (2) to be written in the time domain [2,3]:

i E(t) = Z() * (/i x H) x 7 (3)

NG NE)

where * denotes a time-domain convolution product, [, (x) is

the modified Bessel function of order n and &1) is the unit

step function. For a high conducting body, the condition (3)
reduced to

. 2 ¢ [ris_
X E(Z) — (ﬂ{j J.fi X (ﬁ X _ai(_;_t__t_.).jtv ~1/2 dr (33)
a2

0

Recently implementation of (3) in the FDTD and finite
element methods has been proposed for transient scattering
problems [2]-[5]. Tesche [6] implemented the condition (3a)
in the space-time domain electric field surface integral
equation. In the present paper, the condition (3) for the
tangential component of the electric field is supplemented by
the condition for the normal component of the magnetic field
on the body’s surface and both of them are implemented in
the space-time domain magnetic field surface integral
equation as well as electric field surface integral equation.

II. TRANSIENT IMPEDANCE BOUNDARY CONDITIONS FOR
Lossy DIELECTRIC BODY

Consider a homogeneous body of finite conductivity
surrounded by the non-conductive medium. The magnetic
permeability of the body and' the exterior medium is constant
and equal to u,. The electric and magnetic fields inside the

body can be described by Maxwell's equations in  the
following form

oH

VXI;I:GE+8R£0%5 ) VxE“:—uo*aT (5)

where body’s relative permeability €, is assumed constant.
Let the time variation of the incident field be such that the
penetration depth & into the body remains small as compared

with the minimum radius D of the curvature of the surface of
the body
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§=t,/ou, <<D

We introduce a local Cartesian coordinate system related
to the surface of the body. We direct the coordinates &,,¢,

along the surface and the coordinate 1 normal to it inside the
body. The characteristic lengths associated with these
coordinates are D and 8, respectively.

Following the theory of the perturbation methods, we now
transform to dimensionless variables of order O(1) by
choosing the following scale factors:

[E1=D; [ml=pD; [H1=ID"; [E]=,I(z,)";
p=(t,(ou,) ") D" g=Dt,)” (6)

where c is the velocity of light in vacuum; [ is the scale for the
current. The quantity p in (6) is a small parameter since it is
the ratio of two characteristic times of the problem, namely,
the duration of the pulse and the time required for the field to
diffuse over the distance D. The parameter g is the electric
dimension of the body in transient case.

With the variables (6) Egs.(4)-(5) are written as follows

oH oH oE
2 n & &
- = = 7
PoE P e T 72
oH dH oE
p & _ pl 1 - : I (7b)
on &, z ot
dH oH JE
p2 [ &2 _ &) j — En n (7C)
o, 9, or
JE, OE JH
p n_ ) =—p <] (88)
2, an o
oE oE dH
& -p n- -p 9 (Sb)
an 9, ot
OE, OE oH
[ _ 3! - n (SC)

9, 95, ot
where a=p’g’e, =€, €, /(0T )

From (7¢) it follows that E, =O(p®). By taking into
account this estimation and neglecting the terms of the order
0(p*), we re-write Egs. (7a)-(7b) and (8a)-(8b) in the
following form

- = —L (9a —r = p—>L a
P ~FaT Ty on P
pgﬁé_'ZE +az9E§ (9b) a_Ei:_p_o.)_f_Igi (10b)
on b2 on o

The tangential components of the electric field on the
body’s surface are derived from (10a) and (10b) by
integrating over the boundary layer
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k=12

E = p(-)""' oF, /o (1

where

Fo6 &)= | Hy (6165 m0dn

and superscript “0” denotes the values on the body’s surface
(m=0).

The normal component of the magnetic field can be
derived from (8c) as follows

i-H=pY. JF [, (12)

Fi(81,62:1)
equations of diffusion of the tangential components of the
magnetic field into the body. To derive these equations we
take the derivative of Egs. (9a) and (9b) with respect to 1| and
then couple it with Eqgs. (10b) and (10a), respectively. As a
result, the following equations are obtained

Functions can be obtained from the

oH, J°H JI*H
Sk Ex —a Sk k=12

ot on’ o’

(13)

Egs. (13) are so-called “telegraph” equations that should be
supplemented by the following conditions:

n=0:H, =H; (§.,.1)
t=0 H=0; 8131/&=0;

n—eH; —0;
(14)

By using Laplace’s transformation the following equations
are obtained from (13)

H, )y~ (s+5a)H, =0 (15)
where
H, (£.6,m9=[exp(=sH ;, (£, £, m0)dt
0
The solutions of (15) are written in the form
ﬁék =17§0k exp(—n\/s+sza) (16)
By integrating (16) with respect to 1), one obtain
o0 ﬁ()
F, = H. [exp(-ns +s’a)dn = ——2— (17
¢ 0 Vs+ sta
Inverse transformation of (17) yields:
' t—1 t—1
Fo=a"|H] (——)1 (——jdr' 18
P =4 ;{ g SXP 2a )\ 24 (18)

Substitution of (18) in (11) and (12) gives the desired
boundary conditions
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AixE° =pgt—L[ﬁxI§O]><ﬁ (19)

70 = pL{Divi’] (20)

where the time-operator L and surface divergence Div are
defined as follows

LifGFo)=a™ f e )exp(-— ———)1 [‘ . )dt
2a

Dzvf = dzv((n X f)>< n)

The operator L describes the back impact of the field
penetrating inside the body on the distribution of the incident
field along the body’s surface. This process has inductive
nature since it caused by changes of the magnetic flux through
the body due to the diffusion of the magnetic field into the
body. The function R(?) :

R(ty=a™"? exp(-t/Qa))I, (/(2))
gives the reaction of the field on the incident 8-pulse (Dirac

function). Fig. 1 shows the distributions of function L{f{z}] for
several values of the parameter a and incident function f{t).

— f -
—— L[] (a=0.001)
— Ll a=1)

- L] @=10)

f(t) and LIf(1)]

0,0 0,2 04 06 08 1,0 1,2
time t

Fig. 1 The distributions of the impact function L[f{t}], calculated for

several values of the parameter ¢, and incident function f{z)

III. SURFACE INTEGRAL EQUATION FORMULATIONS

We start from the following standard space-time domain
integral equations for the tangential components of the
magnetic field (MFIE) and the electric field (EFIE) on the
body’s surface [7]

ﬁ'xf]”(? £) =2/ xH"™ (F, 1)+
”{80 2 BT+

20w R (. oH'* 1)) R
HAxH (F ,f))x—é?+(n XT XFI?JF

+r-HO(F )>—+[ @n

JH'(F,1)| R s
or cR’
T=t—R/¢
ﬁ'XEO(?, )= Zﬁ'XEinc(F,t) -
d . o~
—xH (7 1))~
T

AX er | |
__z_ﬂ_ﬁx{}ga

jod = 7
~(IXE (7 1)) % 7?7“ (ﬁ‘ xM)x%-

ot

3E0( T)
d
ot J cR? } d
T=t—-R/c¢

where E™,H ™ are the incident electric and magnetic fields,

IS R
—(n'-EO(r',T))F——(n 22)

respectively; R =7 —7'. The vector #i'=—7 is directed into
the dielectric space normal to the conductor surface S. Re-
writing (21)-(22) in the dimensionless variables in (6) and

_substituting the boundary conditions (19) and (’70) the MFIE

and EFIE become:

182L[I?IO]+

A'xH =2/ xH™ +%ﬂi“\{—q2p1€" gy

. =0 R oH') R pR
+Hi' xHY Y x—-+q| 7' x X — L[ Di HO
( ) e q( afj IS [DivH"]-

R 9
g L[Dsz“]} ds (23)
R T=1—gR
OLIHT . =, X {_Ia o o
- =2‘><E’”‘~———-f R —(n'xH" )+
EY n ” 7:(nx )
L OUEY R, azL[H"]x_“_
P 7% it R’
0. R JE° ) R
(i By g A | ds* 24
(n )R3 q(n (%)Rz} Rs’ (24)
T=t—g,

Note that (23) requires to use both conditions (19)-(20),
whereas in the case of (24) only the condition (19) should be
used. From Maxwell's equations for free space

R-E =g [ DivGit x H')dt ' (25)

By substituting (25) into (24), introducing the equivalent
surface electric current J* = 7'xH" and neglecting the terms
of the order O(p*), Eqs.(23)-(24) can be written as follows

—Ii—} ds+
R T=t=gR

ds —

B oz L R J"'
J'=2n'xH nx_’lj‘{J X 3 ——X

p *'xﬁ {Div‘{’+qRDiv~2¥—}‘

T=i—gR



ﬂ { R A — L[J* ]} ds (26)
T=t-gR
IR R oI’
X — L[J 1= 20X E™ —— X |[[{ R =——
% ] 2r 'g Jtr
-1 I_é T -2 R T T ot
-q —DivJ'—q —3—_[ Divi'dt ds+
R R T=t-qR
- R 9ty r 2 ds Q27
27r atr L3 P

where ¥ = L[7'xJ*]. If we omit terms containing p, then

Eqgs. (26) and (27) reduce to the usual equations for the
scattering from the perfect conductor.

IV. NUMERICAL EXAMPLE

To illustrate the theory, we consider the problem of
transient scattering from infinitely long cylinder of elliptical
cross section. For the discussions of the numerical solution of
the integral equations obtained above, we restrict ourselves by
considering the TE case only (Fig. 2). Under these conditions,

the vector J* has only one component and can be treated as
scalar. The following scale factors were used: the small
semiaxis of ellips as D, the incident pulse duration as 7, and

JI D as I here J The width of

the incident pulse was taken to be D, i.e. g=1. The parameter
a is equal to 1. The time =0 corresponds to the time that the
pulse reaches the body.

Fig. 2 shows the solutions of the problem using the perfect
conductor limit (dotted line), the TIBC for good conductors
used in [6], [8] (dashed line) and using the proposed TIBC for
lossy dielectrics (solid line) for time #=1.5 and for p=0.2.

is the maximum of J ™.
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Fig.2 The distributions of the surface electric current obtained using the

perfect conductor limit (dotted line), the TIBC for good conductor
(dashed line) and the TIBC for lossy dielectric (solid line) along a
half of the cross section contour of long cylinder of elliptical cross
section. The coordinate & has its origin at the point A and proceeds
around the contour, ending at the point B.
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As can been seen from the Fig.2, the correction allows the
accuracy of the calculations to be of 10-15% higher as
compared with the solution in the approximation for perfect
or good conductors. Moreover, Fig. 2 shows the redistribution
of the current along the body surface induced by the field
diffusion into the body. This process can not be taken into
account in the perfect conductor limit and its effect is to
smooth out nonuniformities in the surface current distribution,

V. CONCLUSIONS

This paper presents new surface integral equation
formulations to calculate transient scattering from a
homogeneous body (conductor or lossy dielectric) when the
electromagnetic field diffusion into the body should be taken
into account. The problem is formulated in dimensionless
variables related to the scatterer’s surface in such a way, that
the small parameter p, which is proportional to the ratio of the
transient penetration depth and the characteristic size of the
body, appears in the field equations. Using the perturbation
techniques in the small parameter p, the impedance boundary
condions for the normal component of the magnetic field and
the tangential component of the electric field on the body
surface are derived for transient incident fields. It was shown,

that the boundary conditions are valid within the error O(p?).

The use of the conditions together with space-time domain
surface integral equations is proposed. As a result, the electric
field and magnetic field integral equations over the scatterer’s
surface are decoupled and can be solved independently. A
numerical example using the boundary conditions together
with the surface integral equations is considered.
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