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Abstract

The development of a Transmission-Line Matrix (TLM) for the simulation of ultrasound and
microwave propagation in structures common in Nondestructive Testing (NDT) is described. The
spatial resolution of the proposed model is better than a tenth of a wavelength. Numerical modeling
was carried out for frequencies commonly used in ultrasound and microwave nondestructive testing
(3.5MHz — 20GHz). The sample results provided here for ultrasonic and microwave testing show the
applicability and accuracy of the mode.

Introduction

Many of the methods used in Nondestructive Testing (NDT) are based on wave interaction with the
materials under investigation. Elastic and eectromagnetic waves are used to identify and characterize
the local changes that occur in a materials in response to externa excitation. To improve the results
obtained in NDT of materials, considerable theoretical effort is involved in developing reliable
mathematical models of wave propagation in different media. Due to the complexity of the problems,
numerical methods have proven to be an appropriate approach. The Transmission Line Matrix (TLM)
is a time domain numerical technique which was found to be particularly suitable for modeling of
complex geometries encountered in testing. The TLM method dates back to 1971 [1] and as such is
one of the newest numerical methods available yet it has proven both reliable and flexible enough for
the demands of many applications including those in NDT. The method is considered to be “a
modeling process” rather than a numerical method for solving differential equations [2]. The method
is a direct numerical implementation of the Huygens principle [3]. An appropriate field propagator
(Green function) is first identified [4]. Then the wave front at each iteration (instant in time) for each
point in space is a result produced by the waveforms generated at neighboring points in the previous
iteration. The TLM is a physical discretization approach and this method does not require the solution
of a differential equation. The TLM requires division of the solution region into a rectangular mesh of
transmission lines in ahich the nodes of the mesh are points of discontinuity for impedances. In
addition, to solve a problem using the TLM, a set of boundary conditions and material parameters
must be provided as well as an initia excitation. Then the impulsess are propagated throughout the
mesh using scattering theory on the transmission lines. There is no limitation regarding the frequency
of interest, but the size of the mesh imposes an upper limit on the frequency response analysis. Unlike
some other numerical techniques, the TLM agorithm does not involve an explicit convergence
criterion, a property that makes it an inherently stable method. This stability is reflected in the
flexibility of the TLM method when dealing with various types of input signals and boundaries.

The present work describes the development of models for microwave and ultrasound NDT and
shows that the models are essentially the same for both NDT methods in spite of the inherent
differences between acoustic and microwave applications including obvious differences in
wavelength, material properties and interpretation of results. The purpose of this general model
is to show the applicability, accuracy and flexibility of the method in modeling NDT environments
which previously were difficult to model. Results from various configurations including conducting
and dielectric objects and practical testing configurations are presented to demonstrate the method's
applicability and flexibility. Extraction of S parameters and prediction of resonant frequencies are also
demonstrated.

TheTLM Method

Starting with Kirchhoff’ s laws for a lossless, nondispersive transmission line, the wave equation for
the voltage on the line can be written as [5]:
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To mode ultrasound phenomena, the circuit elements (L and C) are chosen to mode the propagation
in a homogenous infinite space with acoustic impedance Z... Similarly, for microwave phenomena,
the permittivity and permeability represent the wave impedance. By combining the continuity equation
and the equation of motion for a medium with uniform density r and compressibility k, we obtain the
acoustic wave equation written for pressure p [6]. The electromagnetic source free equation is
identical in form [5]. For comparison we write them together:
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Equations (1) and (2) show that the following equivalencies can be identified:
peVv;r°oL;k°2C; E°V;n°L;e°2C (3)

The equival encies between the current components (1, |y) and velocity components (ux and uy) or the
magnetic field components (Hy and Hy) can be determined in the same way.

Based on the equivalence between the wave equation written for acoustic or eectromagnetic waves
and the wave equation for an ideal transmission line, scattering matrix theory (SMT) is applied to
study the equivalent microwave network as seen at its ports. The SMT determines the output at all
ports for a given input. In a general form this can be written as:

WEEH R (@)

where [\/{J and [\/,'nJ are matrices of reflected and incident pulses, respectively. The scattering
parameters §; are determined by considering that asignal isinjected at port “i” (V' 1 0) whereas at the
rest of the ports the signal is zero — they are match-terminated (V; =0for i*j). The scattering matrix

elements are the voltage reflection and transmission coefficients, respectively. The voltage reflected at
any port “s" at time (k+1) Dt will be[7]:
1 8 e )
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where k is the iteration number and represents the number of time steps Dt that have passed since the
beginning of the computation. The presence of a medium | is modeled either by modifying the
reflection coefficients at the boundary between the two media. The discontinuity in impedances that
exists at the interface between two media is modeled by incorporating an open circuit stub of length
Di/2.
The voltage at node (i) at iteration k isfound as:
_ l i0
kV - 2 ol szb (6)
Propagation in the medium is modeled by the so called connection process whereby the reflected pulse
for a node at time (k+ 1)Dt becomes the incident pulse for neighboring nodes at the previous time step.

I11. Excitation and Response

Equations (4-6) describe wave propagation at any coordinate (x,y) at any instant kDt. To initiate the
process an input excitation needs to be provided. Due to the equivalence with a microwave network
the initial conditions of the problem are modeled by voltage sources that can be placed at any node. A
TLM structure can be excited at any location with practically any kind of excitation. The physical
problem determines the locations and the type of excitation. It is possible for a continuous waveform
to be excited at appropriate input nodes. This excitation is implemented by keeping, for all iterations,
the voltages for input points at pre-set values. When the characteristics of a structure have to be
investigated over a wide frequency range a single localized pulse is used. Initidly, the voltage
amplitudes at all nodes are set to zero except at the selected input point. An impulse is then applied
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there. The minimum time interval for a pulseis DI /v where v is the phase velocity in the mesh. To
minimize the effect of dispersion the minimum distance between the nodes, DI, should be smaller than
1/10" of the smallest wavelength | i, of interest [8]. The output impulse function at a particular point
is obtained by summing the total node voltage at k for all iteration. Mathematically thisis written as a
sum over the total number of iterations. The frequency response, H(jw), is obtained as the Fourier
transform of the time response function

Ultrasonic NDT

The results that follow were obtained using the TLM mode described above and represent
samples of the type of tests that can be simulated. The example shown here is two-dimensional. Three-
dimensional geometries can also be modeled but the problem is considerably larger since the
wavelengths involved in ultrasonic testing are short and the physical geometry large. The example
involves a metallic multilayer bearing made of a steel base and and anti-friction layer (6mm thick)
which contained a disbonded layer. The purpose of these results is not necessarily to show the
detection of the disbond but, rather, to show that the model represents the details of the signals
faithfully. For this purpose, the results of the TLM mode are compared with those from an
experimental setup which measures the response of an ultrasonic transducers. The transducer
(operating at 5 MHz) is micro-positioned in immersion by a set of stepper motors and the signa
digitized and displayed.

To obtain the model results, a sinusoidal Gauss-modulated excitation was used. The excitation
is described as follows:
(t-t)
Vixy)=Ae = cos(pf(t-t,)+ ) (7)

where A-is the amplitude of the excitation; s its standard deviation; t represents time; t,-delay; f-
frequency and j - phase. The pulse parameters have been modified to obtained the best fit with a
reflected signal from a block of material with known acoustic impedance.

The TLM model consisted of a 1000 by 1000 mesh in which a Gaussian pulse with the
following parameters was used for excitation: A = 400V; s =7.7; t,=0.2ns, f = 5 MHz. The sampling
frequency for this smulation was 128 MHz. A comparison between the frequency response obtained
for the real case (dashed line) and for the TLM generated signal (solid line) is shown in Figure 1.
There is good correlation between these two curves. The main frequency components have been
correctly identified.
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Figure 1. Comparison between the frequency response obtained from experiment and the numerically generated for a
metallic multi-layer bearing.

Microwave NDT

To demonstrate the application of the TLM method described above, we calculated the Sy
parameter in a resonant microwave measurement system and related it to permeability variations of a
ferromagnetic sample in comparison with a nonmagnetic sample. The results were compared with
experimental data. The experimental set-up consists of a sample of the materia placed in a dc
magnetic field of an electromagnet. Both sample and the e ectromagnet are placed under a resonant
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electric field probe connected to a network analyzer. The probe is mounted horizontally over an x-y
table and moves by means of stepper motors for exact positioning over the test sample. The resonant
frequency is measured by means of the network analyzer. Figure 2 shows the S;; parameter for a Co-
Netic alloy sample with nomina relative permeability of 1000 in comparison with a nonmagnetic
sample (relative permeability of 1). Although there is a 5% shift in the resonant frequency, between
experimental and numerical data, this is attributed to the different frequency steps used in the two
types of data. However, the change in the S;; parameter due to permeability variations is clearly
shown.
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Figure 2. Experimental and numerical curves obtained for the S;; parameter to show variations due to changes in
permegbility.

Conclusions

The TLM method presented here has been shown to be accurate and flexible and therefore a good
candidate for modeling of nondestructive phenomena which are notorious for complex geometries and
material properties. The fact that a single method can handle disparate phenomena such as ultrasonic
NDT and microwave NDT makes it particularly useful. Sample results in ultrasonic and microwave
NDT were provided to show its capahilities.
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