Engineering electromagnetics -1st ed.
  Front cover

Engineering electromagnetics 1st ed. - back
Back cover

Engineering Electromagnetics

    The applications involving electromagnetism are so pervasive that it is difficult to estimate their contribution to modern life:  generation and transmission ofelectric energy, electric motors and actuators, radio, television, magnetic information storage, and even the mundane little magnet used to hold papers on the refrigerator all use electromagnetic fields.  One would, indeed, be hard pressed to find a device that works entirely without electromagnetism.

    This text not only provides students with a good theoretical understanding of the electromagnetic field equations, it also treats a large number of applications.  In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of  photocopying, ink-jet printing, electrostatic separation and deposition, paint spraying, and powder coating.  In magnetism, the applications discussed include electric motors and generators, permanent magnets, nuclear magnetic resonance, magnetic recording, and electromagnetic braking.  Magnetic force, torque, and magnetic energy are discussed in the context of electric motors and transformers; the applications discussed include linear induction motors, electromagnetic propulsion, magneto-hydrodynamic power generation, and nondestructive testing of materials.  The discussion ofel ectromagnetic waves includes such applications as the use of electromagnetic waves for materials processing, microwave detection of substances, remote sensing of the earth and its resources, applications of new materials, and the use of so-called stealth materials in aerospace systems.

    More than 300 fully worked examples and 700 problems and exercises help students clarify and test their knowledge.

Spring Verlag, New York, February 2000, 1231 pages
ISBN 0-387-98645-6

    Back to Main Page             Back to Publications


Part I. The Electromagnetic Fieldand Maxwell's Equations

1.  VectorAlgebra
   1.1. Introduction 
   1.2. Scalars and Vectors
   1.3. Products of Vectors
   1.4. Definition of Feilds
   1.5. Systems of Coordinates
   1.6. Position Vectors 

2.  VectorCalculus
   2.1. Introduction 
   2.2. Integration of Scalar and VectorFunctions
   2.3. Differentiation of Scalar and Vector Functions 
   2.4. Conservative and NonconservativeFields
   2.5. Null Vector Identities and Classification of Vector Fields

3.  Coulomb'sLaw and the Electric Field
   3.1. Introduction 
   3.2. Charge and Charge Density 
   3.3. Coulomb's Law
   3.4. The Electric Field Intensity 
   3.5. The Electric Flux Density: An Initial Definition 
   3.6. Applications
   3.7. Experiments

4. Gauss's Law and the Electric Potential
   4.1. Introduction 
   4.2. The Electrostatic Field: Postulates 
   4.3. Gauss's Law 
   4.4. The Electric Potential 
   4.5. Materials in the Electric Field
   4.6. Interface Conditions 
   4.7. Capacitance 
   4.8. Energy in the Electrostatic Field: Point andDistributed Charges
   4.9. Applications
   4.10. Experiments

5. Boundary Value Problems: Analytic Methods of Solution
   5.1. Introduction
   5.2. Poisson's Equation for the Electrostatic Field 
   5.3. Laplace's Equation for the Electrostatic Field
   5.4. Solution Methods
   5.5. Experiments: The Method of Images

6. Boundary Value Problems: Numerical (Approximate) Methods
   6.1. Introduction 
   6.2. The General Idea of Numeric Solutions 
   6.3. The Finite Difference Methods: Solution tothe Laplace and Poisson Equations 
   6.4. The Method of Moments: An Intuitive Approach 
   6.5. The Finite-Element Method:Introduction 

7. The Steady State Current
   7.1. Introduction 
   7.2. Conservation of Charge
   7.3. Conductors, Dielectrics, and Lossy Dielectrics

   7.4. Ohm's Law
   7.5. Power Dissipations and Joule's Law
   7.6. The Continuity Equation andKirchoff'sCurrent Law 
   7.7. Current Density as a Field 
   7.8. Interface Conditions for Current Density
   7.9. Applications 
   7.10. Experiments

8. Introduction to the FiniteElement Method
   8.1. Introduction 
   8.2. The Magnetic Field, Magnetic Field Intensity, and Magnetic Flux Density
   8.3. The Biot-Savart Law 
   8.4. Ampere's Law 
   8.5. Magnetic Flux Density and Magnetic Flux 
   8.6. Postulates of the Static Magnetic Field 
   8.7. Potential Functions 
   8.8. Applications
   8.9. Experiments

9. The Variational Finite ElementMethod: Some Static Applications
   9.1. Introduction
   9.2. Magnetic Properties of Materials 
   9.3. Magnetic Interface Conditions 
   9.4. Inductance and Inductors
   9.5. Energy Stored in the Magnetic Feild 
   9.6. Magnetic Circuits 
   9.7. Forces in the Magnetic Feild
   9.8. Torque 
   9.9. Applications 
   9.10. Experiments

10. Faraday's Law and Introduction
   10.1. Introduction
   10.2. Faraday's Law
   10.3. Lenz's Law 
   10.4. Motional Electromotive Force: The DCGenerator
   10.5. Induced EMF due to Transformer Action 
   10.6. Combined Motional and Transformer ActionElectromotive Force
   10.7. The Transformer
   10.8. Eddy Currents
   10.9. Applications 

11. Maxwell's Equations
   11.1. Introduction
   11.2. Maxwell's Equations
   11.3. Time-Dependent Potential Functions
   11.4. Interface Conditions for theElectromagnetic Field
   11.5. Particular Forms of Maxwell's Equations

12. Electromagnetic Waves and Propagation
   12.1. Introduction
   12.2. The Wave
   12.3. The Electromagnetic Wave Equation and ItsSolution
   12.4. The Electromagnetic Spectrum
   12.5. The Poynting Theorem and Electromagnetic Power Density
   12.6. The Complex Poynting Vector 
   12.7. Propagation of Waves in Materials 
   12.8. Polarization of Plane Waves
   12.9. Applications
   12.10. Experiments

13. Reflection and Transmission of Plane Waves
   13.1. Introduction
   13.2. Reflection and Transmission at a GeneralDielectric Interface: Normal Incidence
   13.3. Reflection and Transmission at a GeneralDielectric Interface: Oblique Incidence on a Conductor
   13.4. Oblique Incidence on DielectricInterfaces
   13.5. Reflection and Transmission forLayeredMaterials at Normal Incidence
   13.6. Applications 
   13.7. Experiments

14.Theory ofTransmission Lines
   14.1. Introduction
   14.2. The Transmission Line 
   14.3. Transmission Line Parameters 
   14.4. The Transmission Line Equations
   14.5. Types of Transmission Lines 
   14.6. The Field Approach to Transmission Lines 
   14.7. Finite Transmission Lines
   14.8. Power Relations on a General Transmission Line 
   14.9. Resonant Transmission Line Circuits 
   14.10. Applications
   14.11. Experiment

15. The Smith Chart, Impedance Matching, and Transmission LineCircuits
   15.1. Introduction
   15.2. The Smith Chart
   15.3. The Smith Chart as an Admittance Chart 
   15.4. Impedance Matching and theSmith Chart
   15.5. Quarter-Wavelength Transformer Matching
   15.6. Experiments

16. Transients on Transmission Lines
   16.1. Introduction
   16.2. Propagation of Narrow Pulses onFinite,Lossless Transmission Lines  
   16.3. Propagation of Narrow Pulses on Finite,DistortionlessTransmission Lines

   16.4. Transients on Transmission Lines: LongPulses   
   16.5. Transients on Transmission Lines:Finite-Length Pulses

   16.6. Reflections from Discontinuities
   16.7. Transients on Lines with Reactive Loading
   16.8. Initial Conditions on Line
  16.9. Experiments

17. Waveguides
   17.1. Introduction
   17.2. The concept of a Waveguide
   17.3. Transverse Electromagnetic, Transverse Electric, and Transverse Magnetic Waves
   17.4. TE Propagation in Parallel Plate Waveguides
   17.5. TM Propagation in Parallel Plate Waveguides
   17.6. TEM Waves in Parallel Plate Waveguids 
   17.7. Rectangular Waveguides 
   17.8. Other Waveguides
   17.9. Cavity Resonators
   17.10. Energy Relations ina Cavity Resonators
   17.11. Quality Factor ofa CavityResonators
   17.12. Applications

18. Antennas and Electromagnetic Radiation
   18.1. Introduction
   18.2. Electromagnetic Radiation and Radiation Safety
   18.3. Antennas
   18.4. The Electric Dipole
   18.5. Properties of Antennas
   18.6. The Magnetic Dipole 
   18.7. Practical Antennas
   18.8.Antenna Arrays
   18.9.Reciprocity and Receiving Antennas
   18.10. Effective Aperture
   18.11. The Radar
   18.12. Other Antennas
   18.13. Applications




      Back to Main Page                  Back to Publications